Author
Abstract
This report identifies building blocks of master programs on Artificial Intelligence (AI), on the basis of the existing programs available in the European Union. These building blocks provide a first analysis that requires acceptance and sharing by the AI community. The proposal analyses first, the knowledge contents, and second, the educational competences declared as the learning outcomes, of 45 post-graduate academic masters’ programs related with AI from universities in 13 European countries (Belgium, Denmark, Finland, France, Germany, Italy, Ireland, Netherlands, Portugal, Spain, and Sweden in the EU; plus Switzerland and the United Kingdom). As a closely related and relevant part of Informatics and Computer Science, major AI-related curricula on data science have been also taken into consideration for the analysis. The definition of a specific AI curriculum besides data science curricula is motivated by the necessity of a deeper understanding of topics and skills of the former that build up the foundations of strong AI versus narrow AI, which is the general focus of the latter. The body of knowledge with the proposed building blocks for AI consists of a number of knowledge areas, which are classified as Essential, Core, General and Applied. First, the AI Essentials cover topics and competences from foundational disciplines that are fundamental to AI. Second, topics and competences showing a close interrelationship and specific of AI are classified in a set of AI Core domain-specific areas, plus one AI General area for non-domain-specific knowledge. Third, AI Applied areas are built on top of topics and competences required to develop AI applications and services under a more philosophical and ethical perspective. All the knowledge areas are refined into knowledge units and topics for the analysis. As the result of studying core AI knowledge topics from the master programs sample, machine learning is observed to prevail, followed in order by: computer vision; human-computer interaction; knowledge representation and reasoning; natural language processing; planning, search and optimisation; and robotics and intelligent automation. A significant number of master programs analysed are significantly focused on machine learning topics, despite being initially classified in another domain. It is noteworthy that machine learning topics, along with selected topics on knowledge representation, depict a high degree of commonality in AI and data science programs. Finally, the competence-based analysis of the sample master programs’ learning outcomes, based on Bloom’s cognitive levels, outputs that understanding and creating cognitive levels are dominant. Besides, analysing and evaluating are the most scarce cognitive levels. Another relevant outcome is that master programs on AI under the disciplinary lenses of engineering studies show a notable scarcity of competences related with informatics or computing, which are fundamental to AI.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipt:iptwpa:jrc123713. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publication Officer (email available below). General contact details of provider: https://edirc.repec.org/data/ipjrces.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.