IDEAS home Printed from https://ideas.repec.org/p/ipe/ipetds/1427.html
   My bibliography  Save this paper

Clusterização Hierárquica Espacial

Author

Listed:
  • Alexandre Xavier Ywata Carvalho
  • Pedro Henrique Melo Albuquerque
  • Gilberto Rezende de Almeida Junior
  • Rafael Dantas Guimarães

Abstract

Este estudo apresenta uma nova metodologia para clusterização hierárquica espacial de polígonos contíguos, com base em um sistema de coordenadas georreferenciadas. O algoritmo proposto é construído a partir de uma modificação do algoritmo de clusterização hierárquica tradicional, comumente utilizado na literatura de análise multivariada. De acordo com o método proposto neste trabalho, a cada passo do processo sequencial de junção de clusters, impõe-se que somente conglomerados (grupos de polígonos originais, como municípios, estados ou setores censitários) vizinhos possam ser unidos para formar um novo cluster maior. Neste caso, foram definidos como vizinhos polígonos que possuem um vértice em comum (vizinhança do tipo queen) ou uma aresta em comum (vizinhança do tipo rook). O estudo apresenta aplicações da nova metodologia para clusterização dos municípios brasileiros, no ano de 2000, com base em um conjunto de variáveis socioeconômicas. Diversos métodos de clusterização são estudados, assim como diferentes tipos de distâncias entre vetores. Os métodos estudados foram: centroid, single linkage, complete linkage, average linkage e average linkage weighted, Ward`s minimum variance e método da mediana. As distâncias utilizadas foram: norma Lp (em particular, as normas L1 e L2), Mahalanobis e distância euclidiana corrigida pela variância (variance corrected) - caso particular da distância de Mahalanobis. Finalmente, apresenta-se uma discussão sobre alguns métodos comumente utilizados para seleção do número de clusters. This paper presents a new methodology for hierarchical spatial clustering of contiguous polygons, based on a geographic coordinate system. The proposed algorithm is built upon a modification of traditional hierarchical clustering algorithm, commonly used in the multivariate analysis literature. According to the proposed method in this paper, at each step of the sequential process of collapsing clusters, only neighbor clusters (groups of original polygons, i.e. municipalities, census tracts, states) are allowed to be collapsed to form a bigger cluster. Two types of neighborhood are used: polygons with one edge in common (rook neighborhood) or polygons with only one point in common (queen neighborhood). In this paper, the methodology is employed to create clusters of Brazilian municipalities, for the year 2000, based on a group of socio-economic variables. Several clustering methods are investigated, as well as several types of vector distances. The studied methods were: centroid method, single linkage, complete linkage, average linkage, average linkage weighted, Ward minimum variance e median method. The studied distances were: Lp norm (particularly, L1 e L2 norms), Mahalanobis distance and variance corrected Euclidian distance. Finally, a discussion on selection of the number of clusters is presented.

Suggested Citation

  • Alexandre Xavier Ywata Carvalho & Pedro Henrique Melo Albuquerque & Gilberto Rezende de Almeida Junior & Rafael Dantas Guimarães, 2009. "Clusterização Hierárquica Espacial," Discussion Papers 1427, Instituto de Pesquisa Econômica Aplicada - IPEA.
  • Handle: RePEc:ipe:ipetds:1427
    as

    Download full text from publisher

    File URL: http://www.ipea.gov.br/portal/images/stories/PDFs/TDs/td_1427.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexandre Carvalho & Daniel da Mata & Kenneth M. Chomitz & João Carlos Magalhães, 2005. "Spatial Dynamics of Labor Markets in Brazil," Discussion Papers 1110, Instituto de Pesquisa Econômica Aplicada - IPEA.
    2. Juan Carlos Duque & Raúl Ramos & Jordi Suriñach, 2007. "Supervised Regionalization Methods: A Survey," International Regional Science Review, , vol. 30(3), pages 195-220, July.
    3. Kelley Pace, R. & Barry, Ronald, 1997. "Sparse spatial autoregressions," Statistics & Probability Letters, Elsevier, vol. 33(3), pages 291-297, May.
    4. Maravalle, Maurizio & Simeone, Bruno & Naldini, Rosella, 1997. "Clustering on trees," Computational Statistics & Data Analysis, Elsevier, vol. 24(2), pages 217-234, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre Xavier Ywata Carvalho & Pedro Henrique Melo Albuquerque & Gilberto Rezende de Almeida Junior & Rafael Dantas Guimarães & Camilo Rey Laureto, 2009. "Clusterização Hierárquica Espacial com Atributos Binários," Discussion Papers 1428, Instituto de Pesquisa Econômica Aplicada - IPEA.
    2. Sandy Fréret & Denis Maguain, 2017. "The effects of agglomeration on tax competition: evidence from a two-regime spatial panel model on French data," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 24(6), pages 1100-1140, December.
    3. Lavado, Rouselle F. & Barrios, Erniel B., 2010. "Spatial Stochastic Frontier Models," Discussion Papers DP 2010-08, Philippine Institute for Development Studies.
    4. David Brasington & Don Haurin, 2005. "Capitalization of Parent, School, and Peer Group Components of School Quality into House Price," Departmental Working Papers 2005-04, Department of Economics, Louisiana State University.
    5. Verónica Arredondo & Miguel Martínez-Panero & Teresa Peña & Federica Ricca, 2021. "Mathematical political districting taking care of minority groups," Annals of Operations Research, Springer, vol. 305(1), pages 375-402, October.
    6. Juan Jiménez & Jordi Perdiguero, 2012. "Does Rigidity of Prices Hide Collusion?," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 41(3), pages 223-248, November.
    7. Lingxia Wang & Zhongwu Li & Danyang Wang & Xiaoqian Hu & Ke Ning, 2020. "Self-Organizing Map Network-Based Soil and Water Conservation Partitioning for Small Watersheds: Case Study Conducted in Xiaoyang Watershed, China," Sustainability, MDPI, vol. 12(5), pages 1-17, March.
    8. Manuela Alcañiz & Montserrat Guillén & Daniel Sánchez-Moscona & Miguel Santolino & Oscar Llatje & Lluís Ramon, 2013. "Prevalence of alcohol-impaired drivers based on random breath tests in a roadside survey," Working Papers XREAP2013-05, Xarxa de Referència en Economia Aplicada (XREAP), revised Jul 2013.
    9. Calzada, Joan & Martínez-Santos, Fernando, 2014. "Broadband prices in the European Union: Competition and commercial strategies," Information Economics and Policy, Elsevier, vol. 27(C), pages 24-38.
    10. Taylor M. Oshan & Levi J. Wolf & Mehak Sachdeva & Sarah Bardin & A. Stewart Fotheringham, 2022. "A scoping review on the multiplicity of scale in spatial analysis," Journal of Geographical Systems, Springer, vol. 24(3), pages 293-324, July.
    11. Hongxia Wang & Jinde Wang & Bo Huang, 2012. "Prediction for spatio-temporal models with autoregression in errors," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(1), pages 217-244.
    12. Luisa Alamá-Sabater & Laura Márquez-Ramos & Celestino Suárez-Burguet & J. Miguel Navarro-Azorín, 2012. "Interregional Trade and Transport Connectivity. An Analysis of Spatial Dependence," Working Papers 2012/20, Economics Department, Universitat Jaume I, Castellón (Spain).
    13. Esther Goya & Esther Vayá & Jordi Suriñach, 2012. "“Do intra- and inter-industry spillovers matter? CDM model estimates for Spain”," IREA Working Papers 201214, University of Barcelona, Research Institute of Applied Economics, revised Sep 2012.
    14. Ponce, Diego & Puerto, Justo & Temprano, Francisco, 2024. "Mixed-integer linear programming formulations and column generation algorithms for the Minimum Normalized Cuts problem on networks," European Journal of Operational Research, Elsevier, vol. 316(2), pages 519-538.
    15. Jordi Perdiguero & Juan Luis Jiménez, 2012. "“Policy options for the promotion of electric vehicles: a review”," IREA Working Papers 201208, University of Barcelona, Research Institute of Applied Economics, revised Mar 2012.
    16. Steven Bourassa & Eva Cantoni & Martin Hoesli, 2007. "Spatial Dependence, Housing Submarkets, and House Price Prediction," The Journal of Real Estate Finance and Economics, Springer, vol. 35(2), pages 143-160, August.
    17. Gupta, Abhimanyu, 2018. "Autoregressive spatial spectral estimates," Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
    18. Artis, Michael & Moreno, Rosina & Miguelez, Ernest, 2009. "Assessing agglomeration economies in a spatial framework with endogenous regressors," CEPR Discussion Papers 7267, C.E.P.R. Discussion Papers.
    19. Ernest Miguélez & Rorina Moreno, 2012. "“What attracts knowledge workers? The role of space, social connections, institutions, jobs and amenities”," AQR Working Papers 201203, University of Barcelona, Regional Quantitative Analysis Group, revised Feb 2012.
    20. Kapoor, Mudit & Kelejian, Harry H. & Prucha, Ingmar R., 2007. "Panel data models with spatially correlated error components," Journal of Econometrics, Elsevier, vol. 140(1), pages 97-130, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipe:ipetds:1427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fabio Schiavinatto (email available below). General contact details of provider: https://edirc.repec.org/data/ipeaabr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.