IDEAS home Printed from https://ideas.repec.org/p/ipe/ipetds/0158.html
   My bibliography  Save this paper

Dynamic Optimization and Learning: How Should a Manager Set Prices When the Demand Function is Unknown?

Author

Listed:
  • Alexandre X. Carvalho
  • Martin L. Puterman

Abstract

This paper considers the problem of changing prices over time to maximize expected revenues in the presence of unknown demand distribution parameters. It provides and compares several methods that use the sequence of past prices and observed demands to set price in the current period. A Taylor series expansion of the future reward function explicitly illustrates the tradeoff between short term revenue maximization and future information gain and suggests a promising pricing policy referred to as a one-step look-ahead rule. An in-depth Monte Carlo study compares several different pricing strategies and shows that the one-step look-ahead rules dominate other heuristic policies and produce good short term performance. The reasons for the observed bias of parameter estimates are also investigated. Neste artigo, nós estudamos o problema de escolher preços sequencialmente, de forma a maximizar a receita esperada, em um ambiente onde os parâmetros da função de demanda são desconhecidos, e o horizonte de vendas é finito. Vários métodos de otimização seqüencial são discutidos, onde os preços e as vendas resultantes anteriores são utilizados para determinar o preço no período atual. Expansões de Taylor são empregadas para construir aproximações da função valor, explicitando a relação de compromisso entre maximização de receita no curto-prazo e maior ganho de informação para obter maior receita agregada no longo-prazo. A partir dessas expansões, nós derivamos estratégias promissoras, denominadas políticas de one-step look-ahead que combinam otimização e aquisição de informação dinamicamente. Simulações de Monte Carlo são apresentadas, onde constatamos a superioridade das políticas de one-step look-ahead, quando comparadas a diversas outras regras de otimização seqüencial. Finalmente, nós discutimos problemas de endogeneidade, onde fazemos um paralelo com a teoria de controle adaptativo, e discutimos a validade das regras de one-step look-ahead, mesmo quando endogeneidade é observada.

Suggested Citation

  • Alexandre X. Carvalho & Martin L. Puterman, 2015. "Dynamic Optimization and Learning: How Should a Manager Set Prices When the Demand Function is Unknown?," Discussion Papers 0158, Instituto de Pesquisa Econômica Aplicada - IPEA.
  • Handle: RePEc:ipe:ipetds:0158
    as

    Download full text from publisher

    File URL: http://www.ipea.gov.br/portal/images/stories/PDFs/TDs/ingles/dp_158.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. William S. Lovejoy, 1990. "Myopic Policies for Some Inventory Models with Uncertain Demand Distributions," Management Science, INFORMS, vol. 36(6), pages 724-738, June.
    2. Katy S. Azoury, 1985. "Bayes Solution to Dynamic Inventory Models Under Unknown Demand Distribution," Management Science, INFORMS, vol. 31(9), pages 1150-1160, September.
    3. Guillermo Gallego & Garrett van Ryzin, 1994. "Optimal Dynamic Pricing of Inventories with Stochastic Demand over Finite Horizons," Management Science, INFORMS, vol. 40(8), pages 999-1020, August.
    4. Rothschild, Michael, 1974. "A two-armed bandit theory of market pricing," Journal of Economic Theory, Elsevier, vol. 9(2), pages 185-202, October.
    5. Easley, David & Kiefer, Nicholas M, 1989. "Optimal Learning with Endogenous Data," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(4), pages 963-978, November.
    6. Martin A. Lariviere & Evan L. Porteus, 1999. "Stalking Information: Bayesian Inventory Management with Unobserved Lost Sales," Management Science, INFORMS, vol. 45(3), pages 346-363, March.
    7. Xiaomei Ding & Martin L. Puterman & Arnab Bisi, 2002. "The Censored Newsvendor and the Optimal Acquisition of Information," Operations Research, INFORMS, vol. 50(3), pages 517-527, June.
    8. James T. Treharne & Charles R. Sox, 2002. "Adaptive Inventory Control for Nonstationary Demand and Partial Information," Management Science, INFORMS, vol. 48(5), pages 607-624, May.
    9. Balvers, Ronald J & Cosimano, Thomas F, 1990. "Actively Learning about Demand and the Dynamics of Price Adjustment," Economic Journal, Royal Economic Society, vol. 100(402), pages 882-898, September.
    10. Kiefer, Nicholas M & Nyarko, Yaw, 1989. "Optimal Control of an Unknown Linear Process with Learning," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(3), pages 571-586, August.
    11. Silver, Edward A. & Rahnama, Mina Rasty, 1987. "Biased selection of the inventory reorder point when demand parameters are statistically estimated," Engineering Costs and Production Economics, Elsevier, vol. 12(1-4), pages 283-292, July.
    12. Chuanpu Hu & William S. Lovejoy & Steven L. Shafer, 1996. "Comparison of Some Suboptimal Control Policies in Medical Drug Therapy," Operations Research, INFORMS, vol. 44(5), pages 696-709, October.
    13. Kirthi Kalyanam, 1996. "Pricing Decisions Under Demand Uncertainty: A Bayesian Mixture Model Approach," Marketing Science, INFORMS, vol. 15(3), pages 207-221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Philipp Bartke & Natalia Kliewer & Catherine Cleophas, 2018. "Benchmarking filter-based demand estimates for airline revenue management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(1), pages 57-88, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandre X. Carvalho & Martin L. Puterman, 2005. "Dynamic Optimization and Learning: How Should a Manager set Prices when the Demand Function is Unknown ?," Discussion Papers 1117, Instituto de Pesquisa Econômica Aplicada - IPEA.
    2. Lin, Kyle Y., 2006. "Dynamic pricing with real-time demand learning," European Journal of Operational Research, Elsevier, vol. 174(1), pages 522-538, October.
    3. Katy S. Azoury & Julia Miyaoka, 2009. "Optimal Policies and Approximations for a Bayesian Linear Regression Inventory Model," Management Science, INFORMS, vol. 55(5), pages 813-826, May.
    4. Gen Sakoda & Hideki Takayasu & Misako Takayasu, 2019. "Data Science Solutions for Retail Strategy to Reduce Waste Keeping High Profit," Sustainability, MDPI, vol. 11(13), pages 1-30, June.
    5. Yossi Aviv & Amit Pazgal, 2005. "A Partially Observed Markov Decision Process for Dynamic Pricing," Management Science, INFORMS, vol. 51(9), pages 1400-1416, September.
    6. Satya S. Malladi & Alan L. Erera & Chelsea C. White, 2023. "Inventory control with modulated demand and a partially observed modulation process," Annals of Operations Research, Springer, vol. 321(1), pages 343-369, February.
    7. Arnab Bisi & Maqbool Dada, 2007. "Dynamic learning, pricing, and ordering by a censored newsvendor," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(4), pages 448-461, June.
    8. Nicholas C. Petruzzi & Maqbool Dada, 2002. "Dynamic pricing and inventory control with learning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 49(3), pages 303-325, April.
    9. Harun Avci & Kagan Gokbayrak & Emre Nadar, 2020. "Structural Results for Average‐Cost Inventory Models with Markov‐Modulated Demand and Partial Information," Production and Operations Management, Production and Operations Management Society, vol. 29(1), pages 156-173, January.
    10. Woonghee Tim Huh & Paat Rusmevichientong, 2009. "A Nonparametric Asymptotic Analysis of Inventory Planning with Censored Demand," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 103-123, February.
    11. Li Chen & Erica L. Plambeck, 2008. "Dynamic Inventory Management with Learning About the Demand Distribution and Substitution Probability," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 236-256, May.
    12. Mila Nambiar & David Simchi‐Levi & He Wang, 2021. "Dynamic Inventory Allocation with Demand Learning for Seasonal Goods," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 750-765, March.
    13. Ghate, Archis, 2015. "Optimal minimum bids and inventory scrapping in sequential, single-unit, Vickrey auctions with demand learning," European Journal of Operational Research, Elsevier, vol. 245(2), pages 555-570.
    14. Yiangos Papanastasiou, 2020. "Newsvendor Decisions with Two-Sided Learning," Management Science, INFORMS, vol. 66(11), pages 5408-5426, November.
    15. Erhan Bayraktar & Michael Ludkovski, 2010. "Inventory management with partially observed nonstationary demand," Annals of Operations Research, Springer, vol. 176(1), pages 7-39, April.
    16. Apostolos Burnetas & Stephen Gilbert, 2001. "Future Capacity Procurements Under Unknown Demand and Increasing Costs," Management Science, INFORMS, vol. 47(7), pages 979-992, July.
    17. Berk, Emre & Gurler, Ulku & Levine, Richard A., 2007. "Bayesian demand updating in the lost sales newsvendor problem: A two-moment approximation," European Journal of Operational Research, Elsevier, vol. 182(1), pages 256-281, October.
    18. Li Chen, 2010. "Bounds and Heuristics for Optimal Bayesian Inventory Control with Unobserved Lost Sales," Operations Research, INFORMS, vol. 58(2), pages 396-413, April.
    19. Mor Armony & Erica L. Plambeck, 2005. "The Impact of Duplicate Orders on Demand Estimation and Capacity Investment," Management Science, INFORMS, vol. 51(10), pages 1505-1518, October.
    20. Victor F. Araman & René Caldentey, 2009. "Dynamic Pricing for Nonperishable Products with Demand Learning," Operations Research, INFORMS, vol. 57(5), pages 1169-1188, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ipe:ipetds:0158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fabio Schiavinatto (email available below). General contact details of provider: https://edirc.repec.org/data/ipeaabr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.