Parallel hierarchical sampling:a general-purpose class of multiple-chains MCMC algorithms
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Olivier Cappé & Christian P. Robert & Tobias Rydén, 2003. "Reversible jump, birth‐and‐death and more general continuous time Markov chain Monte Carlo samplers," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 679-700, August.
- repec:dau:papers:123456789/6040 is not listed on IDEAS
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Philippe, Anne, 2006. "Bayesian analysis of autoregressive moving average processes with unknown orders," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1904-1923, December.
- Luigi Spezia, 2019. "Modelling covariance matrices by the trigonometric separation strategy with application to hidden Markov models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(2), pages 399-422, June.
- Athanasios C. Micheas & Jiaxun Chen, 2018. "sppmix: Poisson point process modeling using normal mixture models," Computational Statistics, Springer, vol. 33(4), pages 1767-1798, December.
- Cabral, Celso Rômulo Barbosa & Bolfarine, Heleno & Pereira, José Raimundo Gomes, 2008. "Bayesian density estimation using skew student-t-normal mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 52(12), pages 5075-5090, August.
- Rufo, M.J. & Martín, J. & Pérez, C.J., 2010. "New approaches to compute Bayes factor in finite mixture models," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3324-3335, December.
- Meyer-Gohde, Alexander & Neuhoff, Daniel, 2015.
"Generalized exogenous processes in DSGE: A Bayesian approach,"
SFB 649 Discussion Papers
2015-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Meyer-Gohde, Alexander & Neuhoff, Daniel, 2018. "Generalized exogenous processes in DSGE: A Bayesian approach," IMFS Working Paper Series 125, Goethe University Frankfurt, Institute for Monetary and Financial Stability (IMFS).
- Pandolfi, Silvia & Bartolucci, Francesco & Friel, Nial, 2014. "A generalized multiple-try version of the Reversible Jump algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 298-314.
- Kupiec, Paul H., 2020.
"Policy uncertainty and bank stress testing,"
Journal of Financial Stability, Elsevier, vol. 51(C).
- Paul H. Kupiec, 2019. "Policy uncertainty and bank stress testing," AEI Economics Working Papers 1022739, American Enterprise Institute.
- Al-Awadhi, Fahimah & Hurn, Merrilee & Jennison, Christopher, 2004. "Improving the acceptance rate of reversible jump MCMC proposals," Statistics & Probability Letters, Elsevier, vol. 69(2), pages 189-198, August.
- Komárek, Arnost, 2009. "A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3932-3947, October.
- Codazzi, Laura & Colombi, Alessandro & Gianella, Matteo & Argiento, Raffaele & Paci, Lucia & Pini, Alessia, 2022. "Gaussian graphical modeling for spectrometric data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
- Athanasios Christou Micheas, 2014. "Hierarchical Bayesian modeling of marked non-homogeneous Poisson processes with finite mixtures and inclusion of covariate information," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(12), pages 2596-2615, December.
- Rigat, F. & Mira, A., 2012. "Parallel hierarchical sampling: A general-purpose interacting Markov chains Monte Carlo algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1450-1467.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2010-01-30 (Econometrics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ins:quaeco:qf0903. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Segreteria Dipartimento (email available below). General contact details of provider: https://edirc.repec.org/data/feinsit.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.