IDEAS home Printed from https://ideas.repec.org/p/imf/imfwpa/2016-228.html
   My bibliography  Save this paper

Forecast Errors and Uncertainty Shocks

Author

Listed:
  • Sylwia Nowak
  • Pratiti Chatterjee

Abstract

Macroeconomic forecasts are persistently too optimistic. This paper finds that common factors related to general uncertainty about U.S. macrofinancial prospects and global demand drive this overoptimism. These common factors matter most for advanced economies and G- 20 countries. The results suggest that an increase in uncertainty-driven overoptimism has dampening effects on next-year real GDP growth rates. This implies that incorporating the common structure governing forecast errors across countries can help improve subsequent forecasts.

Suggested Citation

  • Sylwia Nowak & Pratiti Chatterjee, 2016. "Forecast Errors and Uncertainty Shocks," IMF Working Papers 2016/228, International Monetary Fund.
  • Handle: RePEc:imf:imfwpa:2016/228
    as

    Download full text from publisher

    File URL: http://www.imf.org/external/pubs/cat/longres.aspx?sk=44413
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Loungani, Prakash, 2001. "How accurate are private sector forecasts? Cross-country evidence from consensus forecasts of output growth," International Journal of Forecasting, Elsevier, vol. 17(3), pages 419-432.
    2. Barbara Rossi & Tatevik Sekhposyan, 2015. "Macroeconomic Uncertainty Indices Based on Nowcast and Forecast Error Distributions," American Economic Review, American Economic Association, vol. 105(5), pages 650-655, May.
    3. Barbara Rossi & Tatevik Sekhposyan, 2015. "Macroeconomic Uncertainty Indices for the Euro Area and Individual Member Countries," Working Papers 820, Barcelona School of Economics.
    4. Mr. Allan Timmermann, 2006. "An Evaluation of the World Economic Outlook Forecasts," IMF Working Papers 2006/059, International Monetary Fund.
    5. John C. Easterwood & Stacey R. Nutt, 1999. "Inefficiency in Analysts' Earnings Forecasts: Systematic Misreaction or Systematic Optimism?," Journal of Finance, American Finance Association, vol. 54(5), pages 1777-1797, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan Jestl & Robert Stehrer, 2021. "EU Employment Dynamics: The Pandemic Years and Beyond," wiiw Research Reports 457, The Vienna Institute for International Economic Studies, wiiw.
    2. Mr. Alvar Kangur & Koralai Kirabaeva & Jean-Marc Natal & Simon Voigts, 2019. "How Informative Are Real Time Output Gap Estimates in Europe?," IMF Working Papers 2019/200, International Monetary Fund.
    3. Morikawa, Masayuki, 2022. "Uncertainty in long-term macroeconomic forecasts: Ex post evaluation of forecasts by economics researchers," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 8-15.
    4. Ms. Burcu Hacibedel & Pierre Mandon & Ms. Priscilla S Muthoora & Nathalie Pouokam, 2019. "Inequality in Good and Bad Times: A Cross-Country Approach," IMF Working Papers 2019/020, International Monetary Fund.
    5. Klaus-Peter Hellwig, 2018. "Overfitting in Judgment-based Economic Forecasts: The Case of IMF Growth Projections," IMF Working Papers 2018/260, International Monetary Fund.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bonciani, Dario, 2015. "Estimating the effects of uncertainty over the business cycle," MPRA Paper 65921, University Library of Munich, Germany.
    2. Laurent Ferrara & Pierre Guérin, 2018. "What are the macroeconomic effects of high‐frequency uncertainty shocks?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(5), pages 662-679, August.
    3. Chow Sheung-Chi & Cunado Juncal & Gupta Rangan & Wong Wing-Keung, 2018. "Causal relationships between economic policy uncertainty and housing market returns in China and India: evidence from linear and nonlinear panel and time series models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(2), pages 1-15, April.
    4. Krkoska, Libor & Teksoz, Utku, 2009. "How reliable are forecasts of GDP growth and inflation for countries with limited coverage?," Economic Systems, Elsevier, vol. 33(4), pages 376-388, December.
    5. Michele Piffer & Maximilian Podstawski, 2018. "Identifying Uncertainty Shocks Using the Price of Gold," Economic Journal, Royal Economic Society, vol. 128(616), pages 3266-3284, December.
    6. Christou, Christina & Gupta, Rangan & Hassapis, Christis, 2017. "Does economic policy uncertainty forecast real housing returns in a panel of OECD countries? A Bayesian approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 50-60.
    7. Chuliá, Helena & Gupta, Rangan & Uribe, Jorge M. & Wohar, Mark E., 2017. "Impact of US uncertainties on emerging and mature markets: Evidence from a quantile-vector autoregressive approach," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 178-191.
    8. Berg, Tim Oliver, 2019. "Business Uncertainty And The Effectiveness Of Fiscal Policy In Germany," Macroeconomic Dynamics, Cambridge University Press, vol. 23(4), pages 1442-1470, June.
    9. Tsuchiya, Yoichi, 2023. "Assessing the World Bank’s growth forecasts," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 64-84.
    10. Christou, Christina & Gupta, Rangan, 2020. "Forecasting equity premium in a panel of OECD countries: The role of economic policy uncertainty," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 243-248.
    11. Meinen, Philipp & Roehe, Oke, 2017. "On measuring uncertainty and its impact on investment: Cross-country evidence from the euro area," European Economic Review, Elsevier, vol. 92(C), pages 161-179.
    12. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    13. Kang, Wensheng & Ratti, Ronald. A. & Vespignani, Joaquin, 2016. "Global uncertainty and the global economy: Decomposing the impact of uncertainty shocks," Working Papers 2016-01, University of Tasmania, Tasmanian School of Business and Economics.
    14. Krkoska, Libor & Teksoz, Utku, 2007. "Accuracy of GDP growth forecasts for transition countries: Ten years of forecasting assessed," International Journal of Forecasting, Elsevier, vol. 23(1), pages 29-45.
    15. Balcilar, Mehmet & Gupta, Rangan & Pierdzioch, Christian, 2016. "Does uncertainty move the gold price? New evidence from a nonparametric causality-in-quantiles test," Resources Policy, Elsevier, vol. 49(C), pages 74-80.
    16. Ullrich Heilemann & Karsten Müller, 2018. "Wenig Unterschiede – Zur Treffsicherheit Internationaler Prognosen und Prognostiker [Few differences—on the accuracy of international forecasts and forecaster]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 12(3), pages 195-233, December.
    17. Mehmet Balcilar & Riza Demirer & Rangan Gupta & Reneé van Eyden, 2016. "Effectiveness of Monetary Policy in the Euro Area: The Role of US Economic Policy Uncertainty," Working Papers 201620, University of Pretoria, Department of Economics.
    18. Mawuli Segnon & Rangan Gupta & Stelios Bekiros & Mark E. Wohar, 2018. "Forecasting US GNP growth: The role of uncertainty," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(5), pages 541-559, August.
    19. M. E. Bontempi & R. Golinelli & M. Squadrani, 2016. "A New Index of Uncertainty Based on Internet Searches: A Friend or Foe of Other Indicators?," Working Papers wp1062, Dipartimento Scienze Economiche, Universita' di Bologna.
    20. Roberto Casarin & Claudia Foroni & Massimiliano Marcellino & Francesco Ravazzolo, 2016. "Uncertainty Through the Lenses of A Mixed-Frequency Bayesian Panel Markov Switching Model," Working Papers 585, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.

    More about this item

    Keywords

    WP; G20 industrial nations; forecast error; Forecasting; common factors; uncertainty; financial market volatility; uncertainty shock; forecasts accuracy; spring forecast; Current account balance; Inflation; Global;
    All these keywords.

    JEL classification:

    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfwpa:2016/228. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Akshay Modi (email available below). General contact details of provider: https://edirc.repec.org/data/imfffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.