IDEAS home Printed from https://ideas.repec.org/p/imf/imfwpa/2010-181.html
   My bibliography  Save this paper

A New Framework to Estimate the Risk-Neutral Probability Density Functions Embedded in Options Prices

Author

Listed:
  • Mr. Kevin C Cheng

Abstract

Building on the widely-used double-lognormal approach by Bahra (1997), this paper presents a multi-lognormal approach with restrictions to extract risk-neutral probability density functions (RNPs) for various asset classes. The contributions are twofold: first, on the technical side, the paper proposes useful transformation/restrictions to Bahra’s original formulation for achieving economically sensible outcomes. In addition, the paper compares the statistical properties of the estimated RNPs among major asset classes, including commodities, the S&P 500, the dollar/euro exchange rate, and the US 10-year Treasury Note. Finally, a Monte Carlo study suggests that the multi-lognormal approach outperforms the double-lognormal approach.

Suggested Citation

  • Mr. Kevin C Cheng, 2010. "A New Framework to Estimate the Risk-Neutral Probability Density Functions Embedded in Options Prices," IMF Working Papers 2010/181, International Monetary Fund.
  • Handle: RePEc:imf:imfwpa:2010/181
    as

    Download full text from publisher

    File URL: http://www.imf.org/external/pubs/cat/longres.aspx?sk=24121
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    2. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    3. Bates, David S, 1991. "The Crash of '87: Was It Expected? The Evidence from Options Markets," Journal of Finance, American Finance Association, vol. 46(3), pages 1009-1044, July.
    4. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sonalika Sinha & Bandi Kamaiah, 2017. "Estimating Option-implied Risk Aversion for Indian Markets," IIM Kozhikode Society & Management Review, , vol. 6(1), pages 90-97, January.
    2. Datta, Deepa Dhume & Londono, Juan M. & Ross, Landon J., 2017. "Generating options-implied probability densities to understand oil market events," Energy Economics, Elsevier, vol. 64(C), pages 440-457.
    3. Fabien Le Floc’h & Cornelis W. Oosterlee, 2019. "Model-Free Stochastic Collocation for an Arbitrage-Free Implied Volatility, Part II," Risks, MDPI, vol. 7(1), pages 1-21, March.
    4. Carlos Caceres & Leandro Medina, 2012. "Measures of Fiscal Risk in Hydrocarbon-Exporting Countries," IMF Working Papers 2012/260, International Monetary Fund.
    5. José L. Vilar-Zanón & Olivia Peraita-Ezcurra, 2019. "A linear goal programming method to recover risk neutral probabilities from options prices by maximum entropy," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 259-276, June.
    6. Mr. Shaun K. Roache & Mrs. Marina V Rousset, 2013. "Unconventional Monetary Policy and Asset Price Risk," IMF Working Papers 2013/190, International Monetary Fund.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    2. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    3. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    4. Bakshi, Gurdip & Madan, Dilip & Panayotov, George, 2010. "Returns of claims on the upside and the viability of U-shaped pricing kernels," Journal of Financial Economics, Elsevier, vol. 97(1), pages 130-154, July.
    5. Nakamura, Hisashi & Shiratsuka, Shigenori, 1999. "Extracting Market Expectations from Option Prices: Case Studies in Japanese Option Markets," Monetary and Economic Studies, Institute for Monetary and Economic Studies, Bank of Japan, vol. 17(1), pages 1-43, May.
    6. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.
    7. Neuhaus, Holger, 1995. "Der Informationsgehalt von Derivaten für die Geldpolitik: Implizite Volatilitäten und Wahrscheinlichkeiten," Discussion Paper Series 1: Economic Studies 1995,03, Deutsche Bundesbank.
    8. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    9. Äijö, Janne, 2008. "Impact of US and UK macroeconomic news announcements on the return distribution implied by FTSE-100 index options," International Review of Financial Analysis, Elsevier, vol. 17(2), pages 242-258.
    10. Ait-Sahalia, Yacine & Wang, Yubo & Yared, Francis, 2001. "Do option markets correctly price the probabilities of movement of the underlying asset?," Journal of Econometrics, Elsevier, vol. 102(1), pages 67-110, May.
    11. Neuhaus, Holger, 1995. "The information content of derivatives for monetary policy: Implied volatilities and probabilities," Discussion Paper Series 1: Economic Studies 1995,03e, Deutsche Bundesbank.
    12. Jean-Baptiste Monnier, 2013. "Technical report : Risk-neutral density recovery via spectral analysis," Papers 1302.2567, arXiv.org.
    13. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    14. Yatchew, Adonis & Hardle, Wolfgang, 2006. "Nonparametric state price density estimation using constrained least squares and the bootstrap," Journal of Econometrics, Elsevier, vol. 133(2), pages 579-599, August.
    15. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    16. Jondeau, E. & Rockinger, M., 1998. "Reading the Smile: The Message Conveyed by Methods Which Infer Risk Neutral," Working papers 47, Banque de France.
    17. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    18. Carvalho, Augusto & Guimaraes, Bernardo, 2018. "State-controlled companies and political risk: Evidence from the 2014 Brazilian election," Journal of Public Economics, Elsevier, vol. 159(C), pages 66-78.
    19. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    20. Malz, Allan M., 1996. "Using option prices to estimate realignment probabilities in the European Monetary System: the case of sterling-mark," Journal of International Money and Finance, Elsevier, vol. 15(5), pages 717-748, October.

    More about this item

    Keywords

    WP;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imf:imfwpa:2010/181. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Akshay Modi (email available below). General contact details of provider: https://edirc.repec.org/data/imfffus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.