IDEAS home Printed from https://ideas.repec.org/p/iim/iimawp/14580.html
   My bibliography  Save this paper

Mathematical Modelling for Time-of-Use Pricing of Electricity in Monopoly and Oligopoly

Author

Listed:
  • Kaicker, Nidhi
  • Dutta, Goutam
  • Das, Debamanyu
  • Banerjee, Subhashree

Abstract

This study establishes the feasibility condition for efficiency gains to arise from time-of-use pricing in the electricity market in a monopolistic and oligopolistic set up using constrained optimization. In an oligopolistic set-up, the strategic interaction between producers depends on the level of demand. In case of high demand, the producers compete on the basis of output they will produce, resulting in a Cournot-type competition. On the other hand, in case of low demand, an oligopolistic structure may break with only the most efficient firm operating, or results in the emergence of leader firms and follower firms, i.e. the Stackleberg model.

Suggested Citation

  • Kaicker, Nidhi & Dutta, Goutam & Das, Debamanyu & Banerjee, Subhashree, 2017. "Mathematical Modelling for Time-of-Use Pricing of Electricity in Monopoly and Oligopoly," IIMA Working Papers WP 2017-10-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
  • Handle: RePEc:iim:iimawp:14580
    as

    Download full text from publisher

    File URL: https://www.iima.ac.in/sites/default/files/rnpfiles/2124064372017-10-01.pdf
    File Function: English Version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faruqui, Ahmad & Hledik, Ryan & Tsoukalis, John, 2009. "The Power of Dynamic Pricing," The Electricity Journal, Elsevier, vol. 22(3), pages 42-56, April.
    2. S. Borenstein, 2013. "Effective and Equitable Adoption of Opt-In Residential Dynamic Electricity Pricing," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 42(2), pages 127-160, March.
    3. Kim, Sang-Won & Bell, Peter C., 2011. "Optimal pricing and production decisions in the presence of symmetrical and asymmetrical substitution," Omega, Elsevier, vol. 39(5), pages 528-538, October.
    4. Zhang, Michael & Bell, Peter C., 2007. "The effect of market segmentation with demand leakage between market segments on a firm's price and inventory decisions," European Journal of Operational Research, Elsevier, vol. 182(2), pages 738-754, October.
    5. Frederic Murphy & Yves Smeers, 2012. "Withholding investments in energy only markets: can contracts make a difference?," Journal of Regulatory Economics, Springer, vol. 42(2), pages 159-179, October.
    6. Faruqui, Ahmad & George, Stephen, 2005. "Quantifying Customer Response to Dynamic Pricing," The Electricity Journal, Elsevier, vol. 18(4), pages 53-63, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Biggar, Darryl R. & Hesamzadeh, Mohammad Reza, 2024. "Optimal retail contracts with contractible uncertainty," Energy Economics, Elsevier, vol. 136(C).
    2. Takanori Ida & Wenjie Wang, 2014. "A Field Experiment on Dynamic Electricity Pricing in Los Alamos:Opt-in Versus Opt-out," Discussion papers e-14-010, Graduate School of Economics Project Center, Kyoto University.
    3. Faruqui, Ahmad & Harris, Dan & Hledik, Ryan, 2010. "Unlocking the [euro]53 billion savings from smart meters in the EU: How increasing the adoption of dynamic tariffs could make or break the EU's smart grid investment," Energy Policy, Elsevier, vol. 38(10), pages 6222-6231, October.
    4. Yumi Yoshida & Kenta Tanaka & Shunsuke Managi, 2017. "Which dynamic pricing rule is most preferred by consumers?—Application of choice experiment," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-11, December.
    5. Christian Gambardella & Michael Pahle & Wolf-Peter Schill, 2016. "Do Benefits from Dynamic Tariffing Rise? Welfare Effects of Real-Time Pricing under Carbon-Tax-Induced Variable Renewable Energy Supply," Discussion Papers of DIW Berlin 1621, DIW Berlin, German Institute for Economic Research.
    6. Kowalska-Pyzalska, Anna & Maciejowska, Katarzyna & Suszczyński, Karol & Sznajd-Weron, Katarzyna & Weron, Rafał, 2014. "Turning green: Agent-based modeling of the adoption of dynamic electricity tariffs," Energy Policy, Elsevier, vol. 72(C), pages 164-174.
    7. Nikos Sakkas & Sofia Yfanti & Pooja Shah & Nikitas Sakkas & Christina Chaniotakis & Costas Daskalakis & Eduard Barbu & Marharyta Domnich, 2023. "Explainable Approaches for Forecasting Building Electricity Consumption," Energies, MDPI, vol. 16(20), pages 1-20, October.
    8. Gambardella, Christian & Pahle, Michael, 2018. "Time-varying electricity pricing and consumer heterogeneity: Welfare and distributional effects with variable renewable supply," Energy Economics, Elsevier, vol. 76(C), pages 257-273.
    9. De Jonghe, C. & Hobbs, B. F. & Belmans, R., 2011. "Integrating short-term demand response into long-term investment planning," Cambridge Working Papers in Economics 1132, Faculty of Economics, University of Cambridge.
    10. Severin Borenstein & James Bushnell, 2015. "The US Electricity Industry After 20 Years of Restructuring," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 437-463, August.
    11. Lavin, Luke & Apt, Jay, 2021. "The importance of peak pricing in realizing system benefits from distributed storage," Energy Policy, Elsevier, vol. 157(C).
    12. Anjo, João & Neves, Diana & Silva, Carlos & Shivakumar, Abhishek & Howells, Mark, 2018. "Modeling the long-term impact of demand response in energy planning: The Portuguese electric system case study," Energy, Elsevier, vol. 165(PA), pages 456-468.
    13. Ren, Zhengen & Grozev, George & Higgins, Andrew, 2016. "Modelling impact of PV battery systems on energy consumption and bill savings of Australian houses under alternative tariff structures," Renewable Energy, Elsevier, vol. 89(C), pages 317-330.
    14. Herter, Karen & Wayland, Seth, 2010. "Residential response to critical-peak pricing of electricity: California evidence," Energy, Elsevier, vol. 35(4), pages 1561-1567.
    15. Banerjee, Pradeep K. & Turner, T. Rolf, 2012. "A flexible model for the pricing of perishable assets," Omega, Elsevier, vol. 40(5), pages 533-540.
    16. Giulietti, Monica & Le Coq, Chloé & Willems, Bert & Anaya, Karim, 2019. "Smart Consumers in the Internet of Energy : Flexibility Markets & Services from Distributed Energy Resources," Other publications TiSEM 2edb43b5-bbd6-487d-abdf-7, Tilburg University, School of Economics and Management.
    17. Yang, Shilei & Shi, Victor & Jackson, Jonathan E., 2015. "Manufacturers׳ channel structures when selling asymmetric competing products," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 641-651.
    18. Jeroen Stragier & Laurence Hauttekeete & Lieven De Marez & Sven Claessens, 2013. "Towards More Energy Efficient Domestic Appliances? Measuring the Perception of Households on Smart Appliances," Energy & Environment, , vol. 24(5), pages 689-700, September.
    19. Robert W. Hahn & Robert D. Metcalfe, 2021. "Efficiency and Equity Impacts of Energy Subsidies," American Economic Review, American Economic Association, vol. 111(5), pages 1658-1688, May.
    20. Eri Nakamura & Fumitoshi Mizutani, 2019. "Necessary demand and extra demand of public utility product: identification using the stochastic frontier model," Economia e Politica Industriale: Journal of Industrial and Business Economics, Springer;Associazione Amici di Economia e Politica Industriale, vol. 46(1), pages 45-64, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iim:iimawp:14580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/eciimin.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.