IDEAS home Printed from https://ideas.repec.org/p/icr/wpmath/15-2007.html
   My bibliography  Save this paper

Bayesian Nonparametric Estimation and Consistency of Mixed Multinomial Logit Choice Models

Author

Listed:
  • Pierpaolo De Blasi
  • Lancelot F. James
  • John W. Lau

Abstract

This paper develops nonparametric estimation for discrete choice models based on the Mixed Multinomial Logit (MMNL) model. It has been shown that MMNL models encompass all discrete choice models derived under the assumption of random utility maximization, subject to the identification of an unknown distribution G. Noting the mixture model description of the MMNL, we employ a Bayesian nonparametric approach, using nonparametric priors on the unknown mixing distribution G, to estimate the unknown choice probabilities. Theoretical support for the use of the proposed methodology is provided by establishing strong consistency of a general nonparametric prior on G under simple sufficient conditions. Consistency is defined according to a L1-type distance on the space of choice probabilities and is achieved by extending to a regression model framework a recent approach to strong consistency based on the summability of square roots of prior probabilities. Moving to estimation, slightly different techniques for non-panel and panel data models are discussed. For practical implementation, we describe efficient and relatively easy to use blocked Gibbs sampling procedures. A simulation study is also performed to illustrate the proposed methods and the exibility they achieve with respect to parametric Gaussian MMNL models.

Suggested Citation

  • Pierpaolo De Blasi & Lancelot F. James & John W. Lau, 2007. "Bayesian Nonparametric Estimation and Consistency of Mixed Multinomial Logit Choice Models," ICER Working Papers - Applied Mathematics Series 15-2007, ICER - International Centre for Economic Research.
  • Handle: RePEc:icr:wpmath:15-2007
    as

    Download full text from publisher

    File URL: http://www.bemservizi.unito.it/repec/icr/wp2007/ICERwp15-07.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bhat, Chandra R., 1998. "Accommodating variations in responsiveness to level-of-service measures in travel mode choice modeling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 495-507, September.
    2. Brownstone, David & Train, Kenneth, 1998. "Forecasting new product penetration with flexible substitution patterns," Journal of Econometrics, Elsevier, vol. 89(1-2), pages 109-129, November.
    3. Stephen Walker, 2003. "On sufficient conditions for Bayesian consistency," Biometrika, Biometrika Trust, vol. 90(2), pages 482-488, June.
    4. Tülin Erdem, 1996. "A Dynamic Analysis of Market Structure Based on Panel Data," Marketing Science, INFORMS, vol. 15(4), pages 359-378.
    5. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    6. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387, January.
    7. Choi, Taeryon & Schervish, Mark J., 2007. "On posterior consistency in nonparametric regression problems," Journal of Multivariate Analysis, Elsevier, vol. 98(10), pages 1969-1987, November.
    8. Karthik K. Srinivasan & Hani S. Mahmassani, 2005. "A Dynamic Kernel Logit Model for the Analysis of Longitudinal Discrete Choice Data: Properties and Computational Assessment," Transportation Science, INFORMS, vol. 39(2), pages 160-181, May.
    9. Lijoi, Antonio & Prunster, Igor & Walker, Stephen G., 2005. "On Consistency of Nonparametric Normal Mixtures for Bayesian Density Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1292-1296, December.
    10. Joan L. Walker & Moshe Ben-Akiva & Denis Bolduc, 2007. "Identification of parameters in normal error component logit-mixture (NECLM) models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(6), pages 1095-1125.
    11. Ishwaran H. & James L. F, 2001. "Gibbs Sampling Methods for Stick Breaking Priors," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 161-173, March.
    12. Stephen G. Walker & Antonio Lijoi & Igor Prunster, 2005. "Data tracking and the understanding of Bayesian consistency," Biometrika, Biometrika Trust, vol. 92(4), pages 765-778, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joan L. Walker & Moshe Ben-Akiva, 2011. "Advances in Discrete Choice: Mixture Models," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 8, Edward Elgar Publishing.
    2. Meredith Fowlie, 2010. "Emissions Trading, Electricity Restructuring, and Investment in Pollution Abatement," American Economic Review, American Economic Association, vol. 100(3), pages 837-869, June.
    3. Carlos Barros, 2012. "Sustainable Tourism in Inhambane-Mozambique," CEsA Working Papers 105, CEsA - Centre for African and Development Studies.
    4. Stephane Hess & John W. Polak, 2004. "An analysis of parking behaviour using discrete choice models calibrated on SP datasets," ERSA conference papers ersa04p60, European Regional Science Association.
    5. Haghani, Milad & Sarvi, Majid & Shahhoseini, Zahra, 2015. "Accommodating taste heterogeneity and desired substitution pattern in exit choices of pedestrian crowd evacuees using a mixed nested logit model," Journal of choice modelling, Elsevier, vol. 16(C), pages 58-68.
    6. Rico Krueger & Akshay Vij & Taha H. Rashidi, 2018. "A Dirichlet Process Mixture Model of Discrete Choice," Papers 1801.06296, arXiv.org.
    7. Chiou, Lesley & Walker, Joan L., 2007. "Masking identification of discrete choice models under simulation methods," Journal of Econometrics, Elsevier, vol. 141(2), pages 683-703, December.
    8. Laura Mørch Andersen, 2013. "Obtaining reliable Likelihood Ratio tests from simulated likelihood functions," IFRO Working Paper 2013/1, University of Copenhagen, Department of Food and Resource Economics.
    9. Maksat Jumamyradov & Benjamin M. Craig & Murat Munkin & William Greene, 2023. "Comparing the Conditional Logit Estimates and True Parameters under Preference Heterogeneity: A Simulated Discrete Choice Experiment," Econometrics, MDPI, vol. 11(1), pages 1-13, January.
    10. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    11. Don Fullerton & Li Gan & Miwa Hattori, 2015. "A model to evaluate vehicle emission incentive policies in Japan," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(1), pages 79-108, January.
    12. Liu, Ruifeng & ,, 2021. "What We Can Learn from the Interactions of Food Traceable Attributes? a Case Study of Fuji Apple in China," 2021 Conference, August 17-31, 2021, Virtual 315916, International Association of Agricultural Economists.
    13. Frick, Bernd & Barros, Carlos Pestana & Prinz, Joachim, 2010. "Analysing head coach dismissals in the German "Bundesliga" with a mixed logit approach," European Journal of Operational Research, Elsevier, vol. 200(1), pages 151-159, January.
    14. Bernard Fortin & Nicolas Jacquemet & Bruce Shearer, 2008. "Policy Analysis in Health-Services Market: Accounting for Quality and Quantity," Annals of Economics and Statistics, GENES, issue 91-92, pages 293-319.
    15. Deka, Devajyoti & Carnegie, Jon, 2021. "Predicting transit mode choice of New Jersey workers commuting to New York City from a stated preference survey," Journal of Transport Geography, Elsevier, vol. 91(C).
    16. Useche, Pilar & Barham, Bradford & Foltz, Jeremy, 2006. "A Trait Specific Model of GM Crop Adoption by Minnesota and Wisconsin Corn Farmers," Working Papers 201525, University of Wisconsin-Madison, Department of Agricultural and Applied Economics, Food System Research Group.
    17. Norton, Daniel & Hynes, Stephen, 2014. "Valuing the non-market benefits arising from the implementation of the EU Marine Strategy Framework Directive," Ecosystem Services, Elsevier, vol. 10(C), pages 84-96.
    18. Siikamaki, Juha & Layton, David F., 2007. "Discrete choice survey experiments: A comparison using flexible methods," Journal of Environmental Economics and Management, Elsevier, vol. 53(1), pages 122-139, January.
    19. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    20. Kettlewell, Nathan & Walker, Matthew J. & Yoo, Hong Il, 2024. "Alternative Models of Preference Heterogeneity for Elicited Choice Probabilities," IZA Discussion Papers 16821, Institute of Labor Economics (IZA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:icr:wpmath:15-2007. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Daniele Pennesi (email available below). General contact details of provider: https://edirc.repec.org/data/icerrit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.