IDEAS home Printed from https://ideas.repec.org/p/ibm/finlab/flwp_54.html
   My bibliography  Save this paper

Put-Call Duality and Symmetry

Author

Listed:
  • Fajardo, J.
  • Mordecki, E.

Abstract

No abstract is available for this item.

Suggested Citation

  • Fajardo, J. & Mordecki, E., 2003. "Put-Call Duality and Symmetry," Finance Lab Working Papers flwp_54, Finance Lab, Insper Instituto de Ensino e Pesquisa.
  • Handle: RePEc:ibm:finlab:flwp_54
    as

    Download full text from publisher

    File URL: http://www.ibmecsp.edu.br/pesquisa/download.php?recid=2661
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. Steven Kou, 2000. "A Jump Diffusion Model for Option Pricing with Three Properties: Leptokurtic Feature, Volatility Smile, and Analytical Tractability," Econometric Society World Congress 2000 Contributed Papers 0062, Econometric Society.
    3. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José Fajardo & Ernesto Mordecki, 2005. "Duality and Derivative Pricing with Time-Changed Lévy Processes," IBMEC RJ Economics Discussion Papers 2005-12, Economics Research Group, IBMEC Business School - Rio de Janeiro.
    2. B. Jourdain, 2007. "Stochastic flow approach to Dupire’s formula," Finance and Stochastics, Springer, vol. 11(4), pages 521-535, October.
    3. Aur'elien Alfonsi & Benjamin Jourdain, 2006. "A Call-Put Duality for Perpetual American Options," Papers math/0612648, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fajardo, J. & Mordeckiy, E., 2003. "Pricing Derivatives on Two Lévy-driven Stocks," Finance Lab Working Papers flwp_56, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    2. Fajardo, J. & Mordeckiz, E., 2004. "Duality and Derivative Pricing with Lévy Processes," Finance Lab Working Papers flwp_71, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    3. Geman, Helyette, 2002. "Pure jump Levy processes for asset price modelling," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1297-1316, July.
    4. Boris Ter-Avanesov & Homayoon Beigi, 2024. "MLP, XGBoost, KAN, TDNN, and LSTM-GRU Hybrid RNN with Attention for SPX and NDX European Call Option Pricing," Papers 2409.06724, arXiv.org, revised Oct 2024.
    5. Geman, Hélyette, 2005. "From measure changes to time changes in asset pricing," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2701-2722, November.
    6. Kao, Lie-Jane & Wu, Po-Cheng & Lee, Cheng-Few, 2012. "Time-changed GARCH versus the GARJI model for prediction of extreme news events: An empirical study," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 115-129.
    7. Madan, Dilip B. & Wang, King, 2016. "Nonrandom price movements," Finance Research Letters, Elsevier, vol. 17(C), pages 103-109.
    8. Lau, John W. & Siu, Tak Kuen, 2008. "On option pricing under a completely random measure via a generalized Esscher transform," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 99-107, August.
    9. Ballotta, Laura, 2005. "A Lévy process-based framework for the fair valuation of participating life insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 37(2), pages 173-196, October.
    10. Marc Atlan & Hélyette Geman & Dilip Madan & Marc Yor, 2007. "Correlation and the pricing of risks," Annals of Finance, Springer, vol. 3(4), pages 411-453, October.
    11. Bin Xie & Weiping Li & Nan Liang, 2021. "Pricing S&P 500 Index Options with L\'evy Jumps," Papers 2111.10033, arXiv.org, revised Nov 2021.
    12. Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
    13. Tim Leung & Marco Santoli, 2014. "Accounting for earnings announcements in the pricing of equity options," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(04), pages 1-46.
    14. Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
    15. Dilip B. Madan & Wim Schoutens, 2019. "Arbitrage Free Approximations to Candidate Volatility Surface Quotations," JRFM, MDPI, vol. 12(2), pages 1-21, April.
    16. Yanhui Mi, 2016. "A modified stochastic volatility model based on Gamma Ornstein–Uhlenbeck process and option pricing," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-16, June.
    17. Li, Minqiang, 2008. "Approximate inversion of the Black-Scholes formula using rational functions," European Journal of Operational Research, Elsevier, vol. 185(2), pages 743-759, March.
    18. JosE Fajardo & Ernesto Mordecki, 2006. "Symmetry and duality in Levy markets," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 219-227.
    19. Hamidreza Maleki Almani & Foad Shokrollahi & Tommi Sottinen, 2024. "Hedging in Jump Diffusion Model with Transaction Costs," Papers 2408.10785, arXiv.org.
    20. Xin-Jiang He & Sha Lin, 2022. "An Analytical Approximation Formula for Barrier Option Prices Under the Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 60(4), pages 1413-1425, December.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibm:finlab:flwp_54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Naercio Menezes (email available below). General contact details of provider: https://edirc.repec.org/data/ibmecbr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.