IDEAS home Printed from https://ideas.repec.org/p/hrv/faseco/12992320.html
   My bibliography  Save this paper

Fat Tails and the Social Cost of Carbon

Author

Listed:
  • Weitzman, Martin L.

Abstract

At high enough greenhouse gas concentrations, climate change might conceivably cause catastrophic damages with small but non-negligible probabilities. If the bad tail of climate damages is sufficiently fat, and if the coefficient of relative risk aversion is greater than one, the catastrophe-reducing insurance aspect of mitigation investments could in theory have a strong influence on raising the social cost of carbon. In this paper I exposit the influence of fat tails on climate change economics in a simple stark formulation focused on the social cost of carbon. I then attempt to place the basic underlying issues within a balanced perspective.

Suggested Citation

  • Weitzman, Martin L., 2014. "Fat Tails and the Social Cost of Carbon," Scholarly Articles 12992320, Harvard University Department of Economics.
  • Handle: RePEc:hrv:faseco:12992320
    as

    Download full text from publisher

    File URL: http://dash.harvard.edu/bitstream/handle/1/12992320/203061/aer.104.5.544fattailsandthesocialcostofcarbon.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Simon Dietz, 2011. "High impact, low probability? An empirical analysis of risk in the economics of climate change," Climatic Change, Springer, vol. 108(3), pages 519-541, October.
    2. Antony Millner, 2013. "On Welfare Frameworks and Catastrophic Climate Risks," CESifo Working Paper Series 4442, CESifo.
    3. Millner, Antony, 2013. "On welfare frameworks and catastrophic climate risks," Journal of Environmental Economics and Management, Elsevier, vol. 65(2), pages 310-325.
    4. Robert J. Barro, 2015. "Environmental Protection, Rare Disasters and Discount Rates," Economica, London School of Economics and Political Science, vol. 82(325), pages 1-23, January.
    5. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    6. Dietz, Simon, 2011. "High impact, low probability?: an empirical analysis of risk in the economics of climate change," LSE Research Online Documents on Economics 38586, London School of Economics and Political Science, LSE Library.
    7. Martin L. Weitzman, 2011. "Fat-Tailed Uncertainty in the Economics of Catastrophic Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(2), pages 275-292, Summer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Bruin, Kelly & Kiran Krishnamurthy, Chandra, 2021. "Optimal Climate Policy with Fat-tailed Uncertainty: What the Models Can Tell Us," Papers WP697, Economic and Social Research Institute (ESRI).
    2. Hwang, In Chang & Tol, Richard S.J. & Hofkes, Marjan W., 2016. "Fat-tailed risk about climate change and climate policy," Energy Policy, Elsevier, vol. 89(C), pages 25-35.
    3. Ian W. R. Martin & Robert S. Pindyck, 2015. "Averting Catastrophes: The Strange Economics of Scylla and Charybdis," American Economic Review, American Economic Association, vol. 105(10), pages 2947-2985, October.
    4. In Chang Hwang & Richard S.J. Tol & Marjan W. Hofkes, 2013. "Tail-effect and the Role of Greenhouse Gas Emissions Control," Working Paper Series 6613, Department of Economics, University of Sussex Business School.
    5. Besley, Tim & Dixit, Avinash K., 2017. "Comparing Alternative Policies Against Environmental Catastrophes," CEPR Discussion Papers 11802, C.E.P.R. Discussion Papers.
    6. Chambers, Robert G. & Melkonyan, Tigran, 2017. "Ambiguity, reasoned determination, and climate-change policy," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 74-92.
    7. Richard S J Tol, 2018. "The Economic Impacts of Climate Change," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 4-25.
    8. Matthew Adler & Nicolas Treich, 2015. "Prioritarianism and Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 279-308, October.
    9. Andrea Rampa, 2020. "Climate change, catastrophes and Dismal Theorem: a critical review [Klimawandel, Katastrophen und das „Dismal Theorem“: eine kritische Überprüfung]," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 40(2), pages 113-136, October.
    10. Vale, Petterson Molina, 2016. "The changing climate of climate change economics," Ecological Economics, Elsevier, vol. 121(C), pages 12-19.
    11. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    12. Newbery, David, 2018. "Policies for decarbonizing a liberalized power sector," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-24.
    13. Pezzey, John C.V. & Burke, Paul J., 2014. "Towards a more inclusive and precautionary indicator of global sustainability," Ecological Economics, Elsevier, vol. 106(C), pages 141-154.
    14. Devin Michelle Bunten & Matthew E. Kahn, 2014. "The Impact of Emerging Climate Risks on Urban Real Estate Price Dynamics," NBER Working Papers 20018, National Bureau of Economic Research, Inc.
    15. Havranek, Tomas & Irsova, Zuzana & Janda, Karel & Zilberman, David, 2015. "Selective reporting and the social cost of carbon," Energy Economics, Elsevier, vol. 51(C), pages 394-406.
    16. Ottmar Edenhofer & Susanne Kadner & Christoph von Stechow & Gregor Schwerhoff & Gunnar Luderer, 2014. "Linking climate change mitigation research to sustainable development," Chapters, in: Giles Atkinson & Simon Dietz & Eric Neumayer & Matthew Agarwala (ed.), Handbook of Sustainable Development, chapter 30, pages 476-499, Edward Elgar Publishing.
    17. Simon Dietz & Anca N. Matei, 2013. "Is there space for agreement on climate change? A non-parametric approach to policy evaluation," GRI Working Papers 136, Grantham Research Institute on Climate Change and the Environment.
    18. Nicolas Taconet & Céline Guivarch & Antonin Pottier, 2021. "Social Cost of Carbon Under Stochastic Tipping Points," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(4), pages 709-737, April.
    19. Quiggin, John, 2018. "The importance of ‘extremely unlikely’ events: tail risk and the costs of climate change," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), January.
    20. Kelly, David L. & Tan, Zhuo, 2015. "Learning and climate feedbacks: Optimal climate insurance and fat tails," Journal of Environmental Economics and Management, Elsevier, vol. 72(C), pages 98-122.

    More about this item

    JEL classification:

    • H43 - Public Economics - - Publicly Provided Goods - - - Project Evaluation; Social Discount Rate
    • Q51 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Valuation of Environmental Effects
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hrv:faseco:12992320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Office for Scholarly Communication (email available below). General contact details of provider: https://edirc.repec.org/data/deharus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.