IDEAS home Printed from https://ideas.repec.org/p/hit/econdp/2019-01.html
   My bibliography  Save this paper

Pitfalls of Two Step Testing for Changes in the Error Variance and Coefficients of a Linear Regression Model

Author

Listed:
  • Perron, Pierre
  • Yamamoto, Yohei
  • 山本, 庸平

Abstract

In empirical applications based on linear regression models, structural changes often occur in both the error variance and regression coefficients, possibly at different dates. A commonly applied method is to first test for changes in the coefficients (or in the error variance) and, conditional on the break dates found, test for changes in the variance (or in the coefficients). In this note, we provide evidence that such procedures have poor finite sample properties when the changes in the first step are not correctly accounted for. In doing so, we show that testing for changes in the coefficients (or in the variance) ignoring changes in the variance (or in the coefficients) induces size distortions and loss of power. Our results illustrate a need for a joint approach to test for structural changes in both the coefficients and the variance of the errors. We provide some evidence that the procedures suggested by Perron et al. (2019) provide tests with good size and power.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Perron, Pierre & Yamamoto, Yohei & 山本, 庸平, 2019. "Pitfalls of Two Step Testing for Changes in the Error Variance and Coefficients of a Linear Regression Model," Discussion Papers 2019-01, Graduate School of Economics, Hitotsubashi University.
  • Handle: RePEc:hit:econdp:2019-01
    as

    Download full text from publisher

    File URL: https://hermes-ir.lib.hit-u.ac.jp/hermes/ir/re/30296/070econDP19-01.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Deng, Ai & Perron, Pierre, 2008. "A non-local perspective on the power properties of the CUSUM and CUSUM of squares tests for structural change," Journal of Econometrics, Elsevier, vol. 142(1), pages 212-240, January.
    2. James H. Stock & Mark W. Watson, 2003. "Has the Business Cycle Changed and Why?," NBER Chapters, in: NBER Macroeconomics Annual 2002, Volume 17, pages 159-230, National Bureau of Economic Research, Inc.
    3. Jean-Yves Pitarakis, 2004. "Least squares estimation and tests of breaks in mean and variance under misspecification," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 32-54, June.
    4. Deng, Ai & Perron, Pierre, 2008. "The Limit Distribution Of The Cusum Of Squares Test Under General Mixing Conditions," Econometric Theory, Cambridge University Press, vol. 24(3), pages 809-822, June.
    5. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    6. Zhongjun Qu & Pierre Perron, 2007. "Estimating and Testing Structural Changes in Multivariate Regressions," Econometrica, Econometric Society, vol. 75(2), pages 459-502, March.
    7. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    8. Pierre Perron & Yohei Yamamoto & Jing Zhou, 2020. "Testing jointly for structural changes in the error variance and coefficients of a linear regression model," Quantitative Economics, Econometric Society, vol. 11(3), pages 1019-1057, July.
    9. Herrera, Ana Maria & Pesavento, Elena, 2005. "The Decline in U.S. Output Volatility: Structural Changes and Inventory Investment," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 462-472, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pierre Perron & Yohei Yamamoto, 2022. "Structural change tests under heteroskedasticity: Joint estimation versus two‐steps methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 389-411, May.
    2. Daiki Maki & Yasushi Ota, 2021. "Testing for Time-Varying Properties Under Misspecified Conditional Mean and Variance," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1167-1182, April.
    3. Mohitosh Kejriwal & Xuewen Yu & Pierre Perron, 2020. "Bootstrap procedures for detecting multiple persistence shifts in heteroskedastic time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 676-690, September.
    4. Daiki Maki & Yasushi Ota, 2019. "Testing for time-varying properties under misspecified conditional mean and variance," Papers 1907.12107, arXiv.org, revised Aug 2019.
    5. Pierre Perron & Yohei Yamamoto, 2022. "The great moderation: updated evidence with joint tests for multiple structural changes in variance and persistence," Empirical Economics, Springer, vol. 62(3), pages 1193-1218, March.
    6. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2020. "Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis," JRFM, MDPI, vol. 13(10), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Zhou & Pierre Perron, 2008. "Testing for Breaks in Coefficients and Error Variance: Simulations and Applications," Boston University - Department of Economics - Working Papers Series wp2008-010, Boston University - Department of Economics.
    2. Pierre Perron & Yohei Yamamoto, 2022. "Structural change tests under heteroskedasticity: Joint estimation versus two‐steps methods," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(3), pages 389-411, May.
    3. Pierre Perron & Yohei Yamamoto & Jing Zhou, 2020. "Testing jointly for structural changes in the error variance and coefficients of a linear regression model," Quantitative Economics, Econometric Society, vol. 11(3), pages 1019-1057, July.
    4. Pierre Perron & Yohei Yamamoto, 2022. "The great moderation: updated evidence with joint tests for multiple structural changes in variance and persistence," Empirical Economics, Springer, vol. 62(3), pages 1193-1218, March.
    5. Alessandro Casini & Pierre Perron, 2018. "Structural Breaks in Time Series," Boston University - Department of Economics - Working Papers Series WP2019-02, Boston University - Department of Economics.
    6. Oka, Tatsushi & Perron, Pierre, 2018. "Testing for common breaks in a multiple equations system," Journal of Econometrics, Elsevier, vol. 204(1), pages 66-85.
    7. Alaa Abi Morshed & Elena Andreou & Otilia Boldea, 2018. "Structural Break Tests Robust to Regression Misspecification," Econometrics, MDPI, vol. 6(2), pages 1-39, May.
    8. María Dolores Gadea & Ana Gómez-Loscos & Antonio Montañés, 2016. "Oil Price and Economic Growth: A Long Story?," Econometrics, MDPI, vol. 4(4), pages 1-28, October.
    9. Erdenebat Bataa & Denise R. Osborn & Marianne Sensier & Dick van Dijk, 2014. "Identifying Changes in Mean, Seasonality, Persistence and Volatility for G7 and Euro Area Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(3), pages 360-388, June.
    10. María Dolores Gadea-Rivas & Ana Gómez-Loscos & Gabriel Pérez-Quirós, 2014. "The two greatest. Great recession vs. great moderation," Working Papers 1423, Banco de España.
    11. Boldea, Otilia & Hall, Alastair R., 2013. "Estimation and inference in unstable nonlinear least squares models," Journal of Econometrics, Elsevier, vol. 172(1), pages 158-167.
    12. De Lipsis Vincenzo, 2021. "Dating Structural Changes in UK Monetary Policy," The B.E. Journal of Macroeconomics, De Gruyter, vol. 21(2), pages 509-539, June.
    13. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    14. Bai, Jushan & Duan, Jiangtao & Han, Xu, 2024. "The likelihood ratio test for structural changes in factor models," Journal of Econometrics, Elsevier, vol. 238(2).
    15. Christis Katsouris, 2023. "Break-Point Date Estimation for Nonstationary Autoregressive and Predictive Regression Models," Papers 2308.13915, arXiv.org.
    16. Hong, Yongmiao & Linton, Oliver & McCabe, Brendan & Sun, Jiajing & Wang, Shouyang, 2024. "Kolmogorov–Smirnov type testing for structural breaks: A new adjusted-range based self-normalization approach," Journal of Econometrics, Elsevier, vol. 238(2).
    17. Jean-Yves Pitarakis, 2017. "A Simple Approach for Diagnosing Instabilities in Predictive Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(5), pages 851-874, October.
    18. María Dolores Gadea & Ana Gómez‐Loscos & Gabriel Pérez‐Quirós, 2018. "Great Moderation And Great Recession: From Plain Sailing To Stormy Seas?," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(4), pages 2297-2321, November.
    19. Brady Ryan R & Stimel Derek S, 2011. "How the Housing and Financial Wealth Effects Have Changed over Time," The B.E. Journal of Macroeconomics, De Gruyter, vol. 11(1), pages 1-45, August.
    20. Georgios P. Kouretas & Mark E. Wohar, 2012. "The dynamics of inflation: a study of a large number of countries," Applied Economics, Taylor & Francis Journals, vol. 44(16), pages 2001-2026, June.

    More about this item

    Keywords

    structural change; variance shifts; CUSUM of squares tests; hypothesis testing; Sup-LR test;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hit:econdp:2019-01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Digital Resources Section, Hitotsubashi University Library (email available below). General contact details of provider: https://edirc.repec.org/data/fehitjp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.