IDEAS home Printed from https://ideas.repec.org/p/hhs/rbnkwp/0146.html
   My bibliography  Save this paper

Evaluating Implied RNDs by some New Confidence Interval Estimation Techniques

Author

Listed:
  • Andersson, Magnus

    (European Central Bank)

  • Lomakka, Magnus

    (AP-fund 1)

Abstract

This paper evaluates the precision of the parametric double lognormal (DLN) and the nonparametric smoothing spline method (SPLINE) for estimating risk-neutral distributions (RNDs) from observed option prices. By using a bootstrap technique confidence bands are estimated for the riskneutral distributions (RNDs) and the width is used as the criterion when evaluating the precision of the two. Previous literature on estimating confidence bands has to a large extent been estimated by Monte Carlo methods. We argue that the bootstrap technique is to be preferred due to the non-normality of the error structure. Our findings favour the SPLINE method, yielding tighter confidence bands. An example showing how the confidence intervals could be used for practical purposes is also provided.

Suggested Citation

  • Andersson, Magnus & Lomakka, Magnus, 2003. "Evaluating Implied RNDs by some New Confidence Interval Estimation Techniques," Working Paper Series 146, Sveriges Riksbank (Central Bank of Sweden).
  • Handle: RePEc:hhs:rbnkwp:0146
    as

    Download full text from publisher

    File URL: http://www.riksbank.com/upload/7424/wp_146.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robert R. Bliss & Nikolaos Panigirtzoglou, 2001. "Recovering risk aversion from options," Working Paper Series WP-01-15, Federal Reserve Bank of Chicago.
    2. Bates, David S, 1991. "The Crash of '87: Was It Expected? The Evidence from Options Markets," Journal of Finance, American Finance Association, vol. 46(3), pages 1009-1044, July.
    3. Ritchey, Robert J, 1990. "Call Option Valuation for Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, Winter.
    4. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    5. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    6. Robert J. Ritchey, 1990. "Call Option Valuation For Discrete Normal Mixtures," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 13(4), pages 285-296, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Healy, J.V. & Gregoriou, A. & Hudson, R., 2018. "Test of recent advances in extracting information from option prices," International Review of Financial Analysis, Elsevier, vol. 56(C), pages 292-302.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Soderlind, Paul & Svensson, Lars, 1997. "New techniques to extract market expectations from financial instruments," Journal of Monetary Economics, Elsevier, vol. 40(2), pages 383-429, October.
    3. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    4. Shi-jie Jiang & Mujun Lei & Cheng-Huang Chung, 2018. "An Improvement of Gain-Loss Price Bounds on Options Based on Binomial Tree and Market-Implied Risk-Neutral Distribution," Sustainability, MDPI, vol. 10(6), pages 1-17, June.
    5. Xin Liu, 2016. "Asset Pricing with Random Volatility," Papers 1610.01450, arXiv.org, revised Sep 2018.
    6. Marcos Massaki Abe & Eui Jung Chang & Benjamin Miranda Tabak, 2007. "Forecasting Exchange Rate Density Using Parametric Models: the Case of Brazil," Brazilian Review of Finance, Brazilian Society of Finance, vol. 5(1), pages 29-39.
    7. Liyuan Jiang & Shuang Zhou & Keren Li & Fangfang Wang & Jie Yang, 2018. "A New Nonparametric Estimate of the Risk-Neutral Density with Applications to Variance Swaps," Papers 1808.05289, arXiv.org, revised Feb 2019.
    8. Laurini, Márcio P., 2007. "Imposing No-Arbitrage Conditions In Implied Volatility Surfaces Using Constrained Smoothing Splines," Insper Working Papers wpe_89, Insper Working Paper, Insper Instituto de Ensino e Pesquisa.
    9. Chung, San-Lin & Wang, Yaw-Huei, 2008. "Bounds and prices of currency cross-rate options," Journal of Banking & Finance, Elsevier, vol. 32(5), pages 631-642, May.
    10. Arindam Kundu & Sumit Kumar & Nutan Kumar Tomar, 2019. "Option Implied Risk-Neutral Density Estimation: A Robust and Flexible Method," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 705-728, August.
    11. Wilkens, Sascha & Roder, Klaus, 2006. "The informational content of option-implied distributions: Evidence from the Eurex index and interest rate futures options market," Global Finance Journal, Elsevier, vol. 17(1), pages 50-74, September.
    12. Haas, Markus & Mittnik, Stefan & Mizrach, Bruce, 2006. "Assessing central bank credibility during the ERM crises: Comparing option and spot market-based forecasts," Journal of Financial Stability, Elsevier, vol. 2(1), pages 28-54, April.
    13. Andersson, Magnus & Lomakka, Magnus, 2005. "Evaluating implied RNDs by some new confidence interval estimation techniques," Journal of Banking & Finance, Elsevier, vol. 29(6), pages 1535-1557, June.
    14. Carol Alexander, 2002. "Short and Long Term Smile Effects: The Binomial Normal Mixture Diffusion Model," ICMA Centre Discussion Papers in Finance icma-dp2003-06, Henley Business School, University of Reading, revised Mar 2003.
    15. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    16. Liu, Xiaoquan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2007. "Closed-form transformations from risk-neutral to real-world distributions," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1501-1520, May.
    17. Alexander, Carol, 2004. "Normal mixture diffusion with uncertain volatility: Modelling short- and long-term smile effects," Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2957-2980, December.
    18. Guillermo Benavides Perales & Israel Felipe Mora Cuevas, 2008. "Parametric vs. non-parametric methods for estimating option implied risk-neutral densities: the case of the exchange rate Mexican peso – US dollar," Ensayos Revista de Economia, Universidad Autonoma de Nuevo Leon, Facultad de Economia, vol. 0(1), pages 33-52, May.
    19. Lina M. Cortés & Javier Perote & Andrés Mora-Valencia, 2017. "Implicit probability distribution for WTI options: The Black Scholes vs. the semi-nonparametric approach," Documentos de Trabajo de Valor Público 15923, Universidad EAFIT.
    20. Carvalho, Augusto & Guimaraes, Bernardo, 2018. "State-controlled companies and political risk: Evidence from the 2014 Brazilian election," Journal of Public Economics, Elsevier, vol. 159(C), pages 66-78.

    More about this item

    Keywords

    Implied risk-neutral distribution; confidence intervals; bootstrap;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • E59 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Other
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:rbnkwp:0146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lena Löfgren (email available below). General contact details of provider: https://edirc.repec.org/data/rbgovse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.