IDEAS home Printed from https://ideas.repec.org/p/hhs/cesisp/0183.html
   My bibliography  Save this paper

Developing Median Regression for SURE Models - with Application to 3-Generation Immigrants’ data in Sweden

Author

Listed:
  • Zeebari, Zangin

    (CAFO, Växjö University)

  • Shukur, Ghazi

    (CESIS - Centre of Excellence for Science and Innovation Studies, Royal Institute of Technology)

Abstract

In this paper we generalize the median regression method in order to make it applicable to systems of regression equations. Given the existence of proper systemwise medians of the errors from different equations, we apply the weighted median regression with the weights obtained from the covariance matrix of errors from different equations calculated by conventional SURE method. The Seemingly Unrelated Median Regression Equations (SUMRE) method produces results that are more robust than the usual SURE or single equations OLS estimations when the distributions of the dependent variables are not symmetric. Moreover, the estimations of the SUMRE method are also more efficient than those of the cases of single equation median regressions when the cross equations errors are correlated. More precisely, the aim of our SUMRE method is to produce a harmony of existing skewness and correlations of errors in systems of regression equations. A theorem is derived and indicates that even with the lack of statistically significant correlations between the equations, using the SMRE method instead of the SURE method will not damage the estimation of parameters. A Monte Carlo experiment was conducted to investigate the properties of the SUMRE method in situations where the number of equations in the system, number of observations, strength of the correlations of cross equations errors and the departure from the normality distribution of the errors were varied. The results show that, when the cross equations correlations are medium or high and the level of skewness of the errors of the equations are also medium or high, the SUMRE method produces estimators that are more efficient and less biased than the ordinary SURE GLS estimators. Moreover, the estimates of applying the SUMRE method are also more efficient and less biased than the estimates obtained when applying the OLS or single equation median regressions. In addition, our results from an empirical application are in accordance with what we discovered from the simulation study, with respect to the relative gain in efficiency of SUMRE estimators compared to SURE estimators, in the presence of Skewness of error terms.

Suggested Citation

  • Zeebari, Zangin & Shukur, Ghazi, 2009. "Developing Median Regression for SURE Models - with Application to 3-Generation Immigrants’ data in Sweden," Working Paper Series in Economics and Institutions of Innovation 183, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.
  • Handle: RePEc:hhs:cesisp:0183
    as

    Download full text from publisher

    File URL: https://static.sys.kth.se/itm/wp/cesis/cesiswp183.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    2. Ekberg, Jan & Hammarstedt, Mats & Shukur, Ghazi, 2007. "SUR estimation of earnings differentials between three generations of immigrants and natives," CAFO Working Papers 2007:7, Linnaeus University, Centre for Labour Market Policy Research (CAFO), School of Business and Economics.
    3. A. Charnes & W. W. Cooper & R. O. Ferguson, 1955. "Optimal Estimation of Executive Compensation by Linear Programming," Management Science, INFORMS, vol. 1(2), pages 138-151, January.
    4. Chib, Siddhartha & Greenberg, Edward, 1995. "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models," Journal of Econometrics, Elsevier, vol. 68(2), pages 339-360, August.
    5. Mats Hammarstedt, 2009. "Intergenerational Mobility and the Earnings Position of First‐, Second‐, and Third‐Generation Immigrants," Kyklos, Wiley Blackwell, vol. 62(2), pages 275-292, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shukur, Ghazi & Zeebari, Zangin, 2011. "Median Regression for SUR Models with the Same Explanatory Varia," Working Paper Series in Economics and Institutions of Innovation 258, Royal Institute of Technology, CESIS - Centre of Excellence for Science and Innovation Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shukur, Ghazi & Zeebari, Zangin, 2011. "On the median regression for SURE models with applications to 3-generation immigrants data in Sweden," Economic Modelling, Elsevier, vol. 28(6), pages 2566-2578.
    2. Zangin Zeebari & Ghazi Shukur, 2023. "On The Least Absolute Deviations Method for Ridge Estimation of Sure Models," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(14), pages 4773-4791, July.
    3. Dima, Bogdan & Dincă, Marius Sorin & Spulbăr, Cristi, 2014. "Financial nexus: Efficiency and soundness in banking and capital markets," Journal of International Money and Finance, Elsevier, vol. 47(C), pages 100-124.
    4. Koenker, Roger & Park, Beum J., 1996. "An interior point algorithm for nonlinear quantile regression," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 265-283.
    5. Kenneth Judd & Lilia Maliar & Serguei Maliar, 2009. "Numerically Stable Stochastic Simulation Approaches for Solving Dynamic Economic Models," NBER Working Papers 15296, National Bureau of Economic Research, Inc.
    6. Cooper, W. W. & Lelas, V. & Sueyoshi, T., 1997. "Goal programming models and their duality relations for use in evaluating security portfolio and regression relations," European Journal of Operational Research, Elsevier, vol. 98(2), pages 431-443, April.
    7. Lee, Haekwan & Tanaka, Hideo, 1999. "Upper and lower approximation models in interval regression using regression quantile techniques," European Journal of Operational Research, Elsevier, vol. 116(3), pages 653-666, August.
    8. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    9. Molyneux, Philip & Pancotto, Livia & Reghezza, Alessio & Rodriguez d'Acri, Costanza, 2022. "Interest rate risk and monetary policy normalisation in the euro area," Journal of International Money and Finance, Elsevier, vol. 124(C).
    10. Paul Hewson & Keming Yu, 2008. "Quantile regression for binary performance indicators," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(5), pages 401-418, September.
    11. Georgios Bertsatos & Plutarchos Sakellaris & Mike G. Tsionas, 2022. "Extensions of the Pesaran, Shin and Smith (2001) bounds testing procedure," Empirical Economics, Springer, vol. 62(2), pages 605-634, February.
    12. Salimata Sissoko, 2011. "Working Paper 03-11 - Niveau de décentralisation de la négociation et structure des salaires," Working Papers 1103, Federal Planning Bureau, Belgium.
    13. Lu, Yao & Zhan, Shuwei & Zhan, Minghua, 2024. "Has FinTech changed the sensitivity of corporate investment to interest rates?—Evidence from China," Research in International Business and Finance, Elsevier, vol. 68(C).
    14. Korom, Philipp, 2016. "Inherited advantage: The importance of inheritance for private wealth accumulation in Europe," MPIfG Discussion Paper 16/11, Max Planck Institute for the Study of Societies.
    15. García, Irene & Huo, Stella & Prado, Raquel & Bravo, Lelys, 2020. "Dynamic Bayesian temporal modeling and forecasting of short-term wind measurements," Renewable Energy, Elsevier, vol. 161(C), pages 55-64.
    16. Daniele, Vittorio, 2007. "Criminalità e investimenti esteri. Un’analisi per le province italiane [The effect of organized crime on Foreign Investments. An Empirical Analysis for the Italian Provinces]," MPRA Paper 6417, University Library of Munich, Germany.
    17. Ma, Lingjie & Koenker, Roger, 2006. "Quantile regression methods for recursive structural equation models," Journal of Econometrics, Elsevier, vol. 134(2), pages 471-506, October.
    18. Cuesta, Lizeth & Ruiz, Yomara, 2021. "Efecto de la globalización sobre la desigualdad. Un estudio global para 104 países usando regresiones cuantílicas [Effect of globalization on inequality. A global study for 104 countries using quan," MPRA Paper 111022, University Library of Munich, Germany.
    19. Dutta, Anupam & Bouri, Elie & Rothovius, Timo & Uddin, Gazi Salah, 2023. "Climate risk and green investments: New evidence," Energy, Elsevier, vol. 265(C).
    20. Cowling, Marc & Ughetto, Elisa & Lee, Neil, 2018. "The innovation debt penalty: Cost of debt, loan default, and the effects of a public loan guarantee on high-tech firms," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 166-176.

    More about this item

    Keywords

    Median regression; SURE models; robustness; efficiency;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:cesisp:0183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Vardan Hovsepyan (email available below). General contact details of provider: https://edirc.repec.org/data/cekthse.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.