IDEAS home Printed from https://ideas.repec.org/p/hhb/hastma/2020_001.html
   My bibliography  Save this paper

Private Sector Data for Understanding Public Behaviors in Crisis: The Case of COVID-19 in Sweden

Author

Listed:
  • Wetter, Erik

    (Department of Entrepreneurship, Innovation, and Technology)

  • Rosengren, Sara

    (Marketing and Strategy)

  • Törn, Fredrik

    (Coop Sverige)

Abstract

The novel Coronavirus (SARS-CoV-2) and the associated Coronavirus disease (COVID-19) has in early 2020 rapidly spread to become one of the biggest global public health crises in a century, with global economic impacts and supply chain shocks never before seen in modern history. Most countries have responded with drastic measures, and at the time of writing this 3.9 billion people – half the world ́s population – are under lockdown or government-imposed mobility restrictions. Sweden can be seen as a case of special interest as unlike most other EU countries, Sweden has not ordered a lockdown, instead following a soft approach, issuing recommendations and calling for citizens to ‘take responsibility’ and to follow government guidelines. While global policies and interventions differ, most policymakers struggle with a lack of timely indicators, specifically with regards to public responses and behaviors. Here we describe a new project in which we combine data and insights from private sector partners in retail and telecom to provide new insights in public behavioral dynamics with a specific focus on mobility, consumption, and hoarding behaviors e.g. bulk buying. In doing so, we highlight the value that private companies can provide in terms of high-resolution insights into public behaviors and responses to government guidelines during crisis. Specifically, for infectious diseases such as COVID- 19, we can see that private sector data can provide timely and disaggregated insights on different segments of the public, specifically such age groups designated as high-risk and thus considered more vulnerable. This working paper will be continuously updated as new insights are produced in order to provide relevant insights that can hopefully assist in supporting more facts-based decision making for the public good.

Suggested Citation

  • Wetter, Erik & Rosengren, Sara & Törn, Fredrik, 2020. "Private Sector Data for Understanding Public Behaviors in Crisis: The Case of COVID-19 in Sweden," SSE Working Paper Series in Business Administration 2020:1, Stockholm School of Economics, revised 14 Apr 2020.
  • Handle: RePEc:hhb:hastma:2020_001
    as

    Download full text from publisher

    File URL: https://swoba.hhs.se/hastma/paper/hastma2020_001.1.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Germann, Frank & Lilien, Gary L. & Fiedler, Lars & Kraus, Matthias, 2014. "Do Retailers Benefit from Deploying Customer Analytics?," Journal of Retailing, Elsevier, vol. 90(4), pages 587-593.
    2. Bradlow, Eric T. & Gangwar, Manish & Kopalle, Praveen & Voleti, Sudhir, 2017. "The Role of Big Data and Predictive Analytics in Retailing," Journal of Retailing, Elsevier, vol. 93(1), pages 79-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ron Berman & Ayelet Israeli, 2022. "The Value of Descriptive Analytics: Evidence from Online Retailers," Marketing Science, INFORMS, vol. 41(6), pages 1074-1096, November.
    2. Gupta, Shaphali & Ramachandran, Divya, 2021. "Emerging Market Retail: Transitioning from a Product-Centric to a Customer-Centric Approach," Journal of Retailing, Elsevier, vol. 97(4), pages 597-620.
    3. Anastasia Griva & Cleopatra Bardaki & Katerina Pramatari & Georgios Doukidis, 2022. "Factors Affecting Customer Analytics: Evidence from Three Retail Cases," Information Systems Frontiers, Springer, vol. 24(2), pages 493-516, April.
    4. Dawn Iacobucci & Maria Petrescu & Anjala Krishen & Michael Bendixen, 2019. "The state of marketing analytics in research and practice," Journal of Marketing Analytics, Palgrave Macmillan, vol. 7(3), pages 152-181, September.
    5. Dekimpe, Marnik G., 2020. "Retailing and retailing research in the age of big data analytics," International Journal of Research in Marketing, Elsevier, vol. 37(1), pages 3-14.
    6. Namin, Aidin & Soysal, Gonca P. & Ratchford, Brian T., 2022. "Alleviating demand uncertainty for seasonal goods: An analysis of attribute-based markdown policy for fashion retailers," Journal of Business Research, Elsevier, vol. 145(C), pages 671-681.
    7. Shamim, Saqib & Zeng, Jing & Khan, Zaheer & Zia, Najam Ul, 2020. "Big data analytics capability and decision making performance in emerging market firms: The role of contractual and relational governance mechanisms," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    8. Frank Germann & Gary L. Lilien & Christine Moorman & Lars Fiedler & Till Groβmaβ, 2020. "Driving Customer Analytics From the Top," Customer Needs and Solutions, Springer;Institute for Sustainable Innovation and Growth (iSIG), vol. 7(3), pages 43-61, October.
    9. Ionut Anica-Popa & Liana Anica-Popa & Cristina Radulescu & Marinela Vrincianu, 2021. "The Integration of Artificial Intelligence in Retail: Benefits, Challenges and a Dedicated Conceptual Framework," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 23(56), pages 120-120, February.
    10. Christiane Lehrer & Manuel Trenz, 2022. "Omnichannel Business," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(2), pages 687-699, June.
    11. Agrawal, Shiv Ratan & Mittal, Divya, 2022. "Optimizing customer engagement content strategy in retail and E-tail: Available on online product review videos," Journal of Retailing and Consumer Services, Elsevier, vol. 67(C).
    12. Gautier Daras & Bruno Agard & Bernard Penz, 2019. "Conceptual Framework for SDSS Development with an Application in the Retail Industry," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 61(3), pages 357-373, June.
    13. Nordin, Fredrik & Ravald, Annika, 2023. "The making of marketing decisions in modern marketing environments," Journal of Business Research, Elsevier, vol. 162(C).
    14. Pramono, Ari & Oppewal, Harmen, 2021. "Where to refuel: Modeling on-the-way choice of convenience outlet," Journal of Retailing and Consumer Services, Elsevier, vol. 61(C).
    15. Johannes Habel & Sascha Alavi & Nicolas Heinitz, 2023. "A theory of predictive sales analytics adoption," AMS Review, Springer;Academy of Marketing Science, vol. 13(1), pages 34-54, June.
    16. Mirzabeiki, Vahid & Saghiri, Soroosh Sam, 2020. "From ambition to action: How to achieve integration in omni-channel?," Journal of Business Research, Elsevier, vol. 110(C), pages 1-11.
    17. Hossain, Md Afnan & Akter, Shahriar & Yanamandram, Venkata, 2021. "Why doesn't our value creation payoff: Unpacking customer analytics-driven value creation capability to sustain competitive advantage," Journal of Business Research, Elsevier, vol. 131(C), pages 287-296.
    18. Bharadwaj Kadiyala & Özalp Özer & A. Serdar Şimşek, 2021. "Data‐Driven Approaches to Targeting Promotion E‐mails: The Case of Delayed Incentives," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 766-782, March.
    19. Pallant, Jason I. & Pallant, Jessica L. & Sands, Sean J. & Ferraro, Carla R. & Afifi, Eslam, 2022. "When and how consumers are willing to exchange data with retailers: An exploratory segmentation," Journal of Retailing and Consumer Services, Elsevier, vol. 64(C).
    20. Yini Chen & Ting Chi, 2021. "How Does Channel Integration Affect Consumers’ Selection of Omni-Channel Shopping Methods? An Empirical Study of U.S. Consumers," Sustainability, MDPI, vol. 13(16), pages 1-29, August.

    More about this item

    Keywords

    COVID-19; retail data; telecom data; behavior;
    All these keywords.

    JEL classification:

    • A00 - General Economics and Teaching - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhb:hastma:2020_001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Helena Lundin (email available below). General contact details of provider: https://edirc.repec.org/data/hhstose.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.