IDEAS home Printed from https://ideas.repec.org/p/han/dpaper/dp-203.html
   My bibliography  Save this paper

Modellierung von Preiserwartungen durch neuronale Netze

Author

Listed:
  • Heinemann, Maik
  • Lange, Carsten

Abstract

Das Papier untersucht, wie Erwartungsbildung mit Hilfe neuronaler Netze modelliert werden kann. Die Grundlage bildet ein Cobweb-Modell, in dem Firmen Preiserwartungen auf Basis eines Feedforward-Netzes bilden. Zunächst wird anhand von Simulationen gezeigt, daß Firmen durch neuronale Erwartungsbildung approximativ rationale Erwartungen bilden können. Im Gegensatz zur Hypothese rationaler Erwartungen ist dafür die Kenntnis des relevanten Modells nicht mehr erforderlich, lediglich Beobachtungen des Marktpreises und der ihn beeinflussenden Variablen vergangener Perioden werden benötigt. Abschließend erfolgt eine allgemeine Analyse neuronalen Lernens. Es ist möglich, Bedingungen dafür abzuleiten, daß die neuronalen Erwartungen der Firmen asymptotisch mit rationalen Preiserwartungen übereinstimmen.

Suggested Citation

  • Heinemann, Maik & Lange, Carsten, 1997. "Modellierung von Preiserwartungen durch neuronale Netze," Hannover Economic Papers (HEP) dp-203, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  • Handle: RePEc:han:dpaper:dp-203
    as

    Download full text from publisher

    File URL: http://diskussionspapiere.wiwi.uni-hannover.de/pdf_bib/dp-203.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marcet, Albert & Sargent, Thomas J., 1989. "Convergence of least squares learning mechanisms in self-referential linear stochastic models," Journal of Economic Theory, Elsevier, vol. 48(2), pages 337-368, August.
    2. Kuan, Chung-Ming & White, Halbert, 1994. "Adaptive Learning with Nonlinear Dynamics Driven by Dependent Processes," Econometrica, Econometric Society, vol. 62(5), pages 1087-1114, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Heinemann, Maik, 2000. "Adaptive learning of rational expectations using neural networks," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 1007-1026, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atanas Christev, 2006. "Learning Hyperinflations," Computing in Economics and Finance 2006 475, Society for Computational Economics.
    2. Heinemann, Maik, 2000. "Adaptive learning of rational expectations using neural networks," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 1007-1026, June.
    3. Eric Ghysels & Norman R. Swanson & Myles Callan, 2002. "Monetary Policy Rules with Model and Data Uncertainty," Southern Economic Journal, John Wiley & Sons, vol. 69(2), pages 239-265, October.
    4. Chen Xiaohong & White Halbert, 2002. "Asymptotic Properties of Some Projection-based Robbins-Monro Procedures in a Hilbert Space," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(1), pages 1-55, April.
    5. Evans, George W. & Honkapohja, Seppo, 1998. "Convergence of learning algorithms without a projection facility," Journal of Mathematical Economics, Elsevier, vol. 30(1), pages 59-86, August.
    6. Guidolin, Massimo & Timmermann, Allan, 2007. "Properties of equilibrium asset prices under alternative learning schemes," Journal of Economic Dynamics and Control, Elsevier, vol. 31(1), pages 161-217, January.
    7. Evans, George W. & Honkapohja, S., 1998. "Stochastic gradient learning in the cobweb model," Economics Letters, Elsevier, vol. 61(3), pages 333-337, December.
    8. Chen, Xiaohong & White, Halbert, 1998. "Nonparametric Adaptive Learning with Feedback," Journal of Economic Theory, Elsevier, vol. 82(1), pages 190-222, September.
    9. Barucci, Emilio & Landi, Leonardo, 1996. "Speculative dynamics with bounded rationality learning," European Journal of Operational Research, Elsevier, vol. 91(2), pages 284-300, June.
    10. Orphanides, Athanasios & Williams, John C., 2008. "Learning, expectations formation, and the pitfalls of optimal control monetary policy," Journal of Monetary Economics, Elsevier, vol. 55(Supplemen), pages 80-96, October.
    11. Giuseppe Ferrero, 2004. "Monetary Policy and the Transition to Rational Expectations," Econometric Society 2004 North American Summer Meetings 101, Econometric Society.
    12. Wieland, Volker, 2000. "Monetary policy, parameter uncertainty and optimal learning," Journal of Monetary Economics, Elsevier, vol. 46(1), pages 199-228, August.
    13. Inkoo Cho & Noah Williams, 2024. "Collusive Outcomes Without Collusion," Papers 2403.07177, arXiv.org.
    14. Kopányi, Dávid, 2017. "The coexistence of stable equilibria under least squares learning," Journal of Economic Behavior & Organization, Elsevier, vol. 141(C), pages 277-300.
    15. Kelly, David L. & Shorish, Jamsheed, 2000. "Stability of Functional Rational Expectations Equilibria," Journal of Economic Theory, Elsevier, vol. 95(2), pages 215-250, December.
    16. Mathieu Pedemonte & Hiroshi Toma & Esteban Verdugo, 2023. "Aggregate Implications of Heterogeneous Inflation Expectations: The Role of Individual Experience," Working Papers 23-04, Federal Reserve Bank of Cleveland.
    17. Nunes, Ricardo, 2009. "Learning The Inflation Target," Macroeconomic Dynamics, Cambridge University Press, vol. 13(2), pages 167-188, April.
    18. Arifovic, Jasmina & Schmitt-Grohé, Stephanie & Uribe, Martín, 2018. "Learning to live in a liquidity trap," Journal of Economic Dynamics and Control, Elsevier, vol. 89(C), pages 120-136.
    19. Michael Funke & Julius Loermann & Andrew Tsang, 2022. "Volatility transmission and volatility impulse response functions in the main and the satellite Renminbi exchange rate markets," Review of International Economics, Wiley Blackwell, vol. 30(2), pages 606-628, May.
    20. Michael Melvin & Frank Westermann, 2022. "Chinese Exchange Rate Policy: Lessons for Global Investors," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(1), pages 145-168, February.

    More about this item

    Keywords

    Rationale Erwartungen; Lernen; Neuronale Netze;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:han:dpaper:dp-203. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Heidrich, Christian (email available below). General contact details of provider: https://edirc.repec.org/data/fwhande.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.