IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/inria-00439350.html
   My bibliography  Save this paper

An anticipative stochastic calculus approach to pricing in markets driven by Lévy processes

Author

Listed:
  • Bernt Oksendal

    (CMA - Center of Mathematics for Applications [Oslo] - Department of Mathematics [Oslo] - Faculty of Mathematics and Natural Sciences [Oslo] - UiO - University of Oslo)

  • Agnès Sulem

    (MATHFI - Financial mathematics - Inria Paris-Rocquencourt - Inria - Institut National de Recherche en Informatique et en Automatique - ENPC - École des Ponts ParisTech - UPEC UP12 - Université Paris-Est Créteil Val-de-Marne - Paris 12)

Abstract

We use the Itô-Ventzell formula for forward integrals and Malliavin calculus to study the stochastic control problem associated to utility indifference pricing in a market driven by Lévy processes. This approach allows us to consider general possibly non-Markovian systems, general utility functions and possibly partial information based portfolios. In the special case of the exponential utility function $U_\alpha = - \exp(-\alpha x)\; ; $ $ \alpha >0$, we obtain asymptotics properties for vanishing $\alpha$. In the special case of full information based portfolios and no jumps, we obtain a recursive formula for the optimal portfolio in a non-Markovian setting.

Suggested Citation

  • Bernt Oksendal & Agnès Sulem, 2009. "An anticipative stochastic calculus approach to pricing in markets driven by Lévy processes," Working Papers inria-00439350, HAL.
  • Handle: RePEc:hal:wpaper:inria-00439350
    Note: View the original document on HAL open archive server: https://inria.hal.science/inria-00439350
    as

    Download full text from publisher

    File URL: https://inria.hal.science/inria-00439350/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fred Benth & Thilo Meyer-Brandis, 2005. "The density process of the minimal entropy martingale measure in a stochastic volatility model with jumps," Finance and Stochastics, Springer, vol. 9(4), pages 563-575, October.
    2. Marek Musiela & Thaleia Zariphopoulou, 2004. "An example of indifference prices under exponential preferences," Finance and Stochastics, Springer, vol. 8(2), pages 229-239, May.
    3. Michael Mania & Martin Schweizer, 2005. "Dynamic exponential utility indifference valuation," Papers math/0508489, arXiv.org.
    4. Richard Rouge & Nicole El Karoui, 2000. "Pricing Via Utility Maximization and Entropy," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 259-276, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Regis Houssou & Olivier Besson, 2010. "Indifference of Defaultable Bonds with Stochastic Intensity models," Papers 1003.4118, arXiv.org.
    2. Michail Anthropelos & Nikolaos E. Frangos & Stylianos Z. Xanthopoulos & Athanasios N. Yannacopoulos, 2008. "On contingent claims pricing in incomplete markets: A risk sharing approach," Papers 0809.4781, arXiv.org, revised Feb 2012.
    3. Marina Santacroce & Paola Siri & Barbara Trivellato, 2023. "Forward Backward SDEs Systems for Utility Maximization in Jump Diffusion Models," Papers 2302.08253, arXiv.org.
    4. Owari, Keita & 尾張, 圭太, 2008. "Robust Exponential Hedging and Indifference Valuation," Discussion Papers 2008-09, Graduate School of Economics, Hitotsubashi University.
    5. Wing Fung Chong & Ying Hu & Gechun Liang & Thaleia Zariphopoulou, 2019. "An ergodic BSDE approach to forward entropic risk measures: representation and large-maturity behavior," Finance and Stochastics, Springer, vol. 23(1), pages 239-273, January.
    6. Mahan Tahvildari, 2021. "Forward indifference valuation and hedging of basis risk under partial information," Papers 2101.00251, arXiv.org.
    7. Lixin Wu & Min Dai, 2009. "Pricing jump risk with utility indifference," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 177-186.
    8. Claudia Ceci & Anna Gerardi, 2011. "Utility indifference valuation for jump risky assets," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 34(2), pages 85-120, November.
    9. Thorsten Rheinländer & Jenny Sexton, 2011. "Hedging Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8062, August.
    10. Mark P. Owen & Gordan Žitković, 2009. "Optimal Investment With An Unbounded Random Endowment And Utility‐Based Pricing," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 129-159, January.
    11. Smimou, K. & Bector, C.R. & Jacoby, G., 2007. "A subjective assessment of approximate probabilities with a portfolio application," Research in International Business and Finance, Elsevier, vol. 21(2), pages 134-160, June.
    12. Huiwen Yan & Gechun Liang & Zhou Yang, 2015. "Indifference Pricing and Hedging in a Multiple-Priors Model with Trading Constraints," Papers 1503.08969, arXiv.org.
    13. Knispel, Thomas & Laeven, Roger J.A. & Svindland, Gregor, 2016. "Robust optimal risk sharing and risk premia in expanding pools," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 182-195.
    14. Michael Monoyios, 2010. "Utility-Based Valuation and Hedging of Basis Risk With Partial Information," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(6), pages 519-551.
    15. Barrieu, Pauline & El Karoui, Nicole, 2005. "Inf-convolution of risk measures and optimal risk transfer," LSE Research Online Documents on Economics 2829, London School of Economics and Political Science, LSE Library.
    16. Keita Owari, 2013. "A Robust Version of Convex Integral Functionals," CARF F-Series CARF-F-319, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    17. Vicky Henderson & Gechun Liang, 2014. "Pseudo linear pricing rule for utility indifference valuation," Finance and Stochastics, Springer, vol. 18(3), pages 593-615, July.
    18. Michail Anthropelos & Scott Robertson & Konstantinos Spiliopoulos, 2015. "The pricing of contingent claims and optimal positions in asymptotically complete markets," Papers 1509.06210, arXiv.org, revised Sep 2016.
    19. Kallsen Jan & Rheinländer Thorsten, 2011. "Asymptotic utility-based pricing and hedging for exponential utility," Statistics & Risk Modeling, De Gruyter, vol. 28(1), pages 17-36, March.
    20. Arnaud Porchet & Nizar Touzi & Xavier Warin, 2009. "Valuation of power plants by utility indifference and numerical computation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 70(1), pages 47-75, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:inria-00439350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.