IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-04138656.html
   My bibliography  Save this paper

Fractal properties, information theory, and market efficiency

Author

Listed:
  • Xavier Brouty

    (ESILV - École Supérieure d'Ingénierie Léonard de Vinci)

  • Matthieu Garcin

    (Research Center - Léonard de Vinci Pôle Universitaire - De Vinci Research Center)

Abstract

Considering that both the entropy-based market information and the Hurst exponent are useful tools for determining whether the efficient market hypothesis holds for a given asset, we study the link between the two approaches. We thus provide a theoretical expression for the market information when log-prices follow either a fractional Brownian motion or its stationary extension using the Lamperti transform. In the latter model, we show that a Hurst exponent close to 1/2 can lead to a very high informativeness of the time series, because of the stationarity mechanism. In addition, we introduce a multiscale method to get a deeper interpretation of the entropy and of the market information, depending on the size of the information set. Applications to Bitcoin, CAC 40 index, Nikkei 225 index, and EUR/USD FX rate, using daily or intraday data, illustrate the methodological content.

Suggested Citation

  • Xavier Brouty & Matthieu Garcin, 2023. "Fractal properties, information theory, and market efficiency," Working Papers hal-04138656, HAL.
  • Handle: RePEc:hal:wpaper:hal-04138656
    Note: View the original document on HAL open archive server: https://hal.science/hal-04138656
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04138656/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bacry, E. & Delour, J. & Muzy, J.F., 2001. "Modelling financial time series using multifractal random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 84-92.
    2. Alvarez-Ramirez, Jose & Rodriguez, Eduardo, 2021. "A singular value decomposition entropy approach for testing stock market efficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 583(C).
    3. Ammy-Driss, Ayoub & Garcin, Matthieu, 2023. "Efficiency of the financial markets during the COVID-19 crisis: Time-varying parameters of fractional stable dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthieu Garcin, 2023. "Complexity measure, kernel density estimation, bandwidth selection, and the efficient market hypothesis," Working Papers hal-04102815, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xavier Brouty & Matthieu Garcin, 2023. "Fractal properties, information theory, and market efficiency," Papers 2306.13371, arXiv.org.
    2. Brouty, Xavier & Garcin, Matthieu, 2024. "Fractal properties, information theory, and market efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    3. Christian M. Hafner, 2012. "Cross-correlating wavelet coefficients with applications to high-frequency financial time series," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(6), pages 1363-1379, December.
    4. Zunino, Luciano & Figliola, Alejandra & Tabak, Benjamin M. & Pérez, Darío G. & Garavaglia, Mario & Rosso, Osvaldo A., 2009. "Multifractal structure in Latin-American market indices," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2331-2340.
    5. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    6. Lee, Chung Kung & Chin Yu, Chung & Cai Wang, Cheng & Der Hwang, Ruey & Kuen Yu, Guey, 2006. "Scaling characteristics in aftershock sequence of earthquake," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 692-702.
    7. Leonid A Safonov & Yoshikazu Isomura & Siu Kang & Zbigniew R Struzik & Tomoki Fukai & Hideyuki Câteau, 2010. "Near Scale-Free Dynamics in Neural Population Activity of Waking/Sleeping Rats Revealed by Multiscale Analysis," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-11, September.
    8. Wei, Kun & Zhang, Youxin & Luo, Yi, 2018. "Variance-mediated multifractal analysis of group participation in chasing a single dangerous prey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 1275-1287.
    9. Makowiec, Danuta & Gała¸ska, Rafał & Dudkowska, Aleksandra & Rynkiewicz, Andrzej & Zwierz, Marcin, 2006. "Long-range dependencies in heart rate signals—revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 632-644.
    10. Ho, Ding-Shun & Lee, Chung-Kung & Wang, Cheng-Cai & Chuang, Mang, 2004. "Scaling characteristics in the Taiwan stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 332(C), pages 448-460.
    11. Rossitsa Yalamova, 2012. "Fractal Measures in Market Microstructure Research," Multinational Finance Journal, Multinational Finance Journal, vol. 16(1-2), pages 137-154, March - J.
    12. Andrey Shternshis & Piero Mazzarisi, 2024. "Variance of entropy for testing time-varying regimes with an application to meme stocks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 215-258, June.
    13. Li, Muyi & Huang, Yongxiang, 2014. "Hilbert–Huang Transform based multifractal analysis of China stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 406(C), pages 222-229.
    14. Rypdal, Martin & Sirnes, Espen & Løvsletten, Ola & Rypdal, Kristoffer, 2013. "Assessing market uncertainty by means of a time-varying intermittency parameter for asset price fluctuations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(16), pages 3335-3343.
    15. Wu, Peng & Muzy, Jean-François & Bacry, Emmanuel, 2022. "From rough to multifractal volatility: The log S-fBM model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    16. Hosseinabadi, S. & Abrinaei, F. & Shirazi, M., 2017. "Statistical and fractal features of nanocrystalline AZO thin films," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 11-22.
    17. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    18. Rizvi, Syed Aun R. & Arshad, Shaista, 2017. "Analysis of the efficiency–integration nexus of Japanese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 296-308.
    19. Challet, Damien & Peirano, Pier Paolo, 2008. "The ups and downs of the renormalization group applied to financial time series," MPRA Paper 9770, University Library of Munich, Germany.
    20. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-04138656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.