IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v481y2017icp11-22.html
   My bibliography  Save this article

Statistical and fractal features of nanocrystalline AZO thin films

Author

Listed:
  • Hosseinabadi, S.
  • Abrinaei, F.
  • Shirazi, M.

Abstract

In this paper, We investigate the morphology effect of Aluminum-doped zinc oxide (AZO) thin films on the physical properties such as conductivity and grain size. The AZO thin films are prepared by spray pyrolysis at different thicknesses in the range 100–400 nm. Height fluctuations obtained from atomic force microscopy (AFM) analysis are applied to the statistical and fractal analysis of thin films. We show that the conductivity of thin films is proportional to the roughness parameter as σ∼Wm which m=6.42±0.50. Calculating the nonlinear measures (skewness and kurtosis) of height fluctuations demonstrates the isotropic nature of AZO rough surfaces. Fractal analysis of the mentioned thin films using two dimensional multifractal detrended fluctuation analysis illustrates the multifractality scaling and the strength of multifractality increases with thickness. Our results show that the reason for the multi-affinity is the existence of different correlations in the height fluctuations of the thin films. Calculating the contour loops features of the height fluctuations reveals that the radius, length, and area of loops increase with thickness enhancement and the radius of contour loops is introduced as a new statistical parameter which is linearly related to the grain size and could be useful to calculate it.

Suggested Citation

  • Hosseinabadi, S. & Abrinaei, F. & Shirazi, M., 2017. "Statistical and fractal features of nanocrystalline AZO thin films," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 481(C), pages 11-22.
  • Handle: RePEc:eee:phsmap:v:481:y:2017:i:c:p:11-22
    DOI: 10.1016/j.physa.2017.03.033
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437117302868
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.03.033?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bacry, E. & Delour, J. & Muzy, J.F., 2001. "Modelling financial time series using multifractal random walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 84-92.
    2. Struzik, Zbigniew R. & Siebes, Arno P.J.M., 2002. "Wavelet transform based multifractal formalism in outlier detection and localisation for financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 309(3), pages 388-402.
    3. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Chung Kung & Chin Yu, Chung & Cai Wang, Cheng & Der Hwang, Ruey & Kuen Yu, Guey, 2006. "Scaling characteristics in aftershock sequence of earthquake," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 371(2), pages 692-702.
    2. Chen, Wang & Wei, Yu & Lang, Qiaoqi & Lin, Yu & Liu, Maojuan, 2014. "Financial market volatility and contagion effect: A copula–multifractal volatility approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 398(C), pages 289-300.
    3. Jiang, Zhi-Qiang & Zhou, Wei-Xing, 2008. "Multifractal analysis of Chinese stock volatilities based on the partition function approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(19), pages 4881-4888.
    4. Makowiec, Danuta & Gała¸ska, Rafał & Dudkowska, Aleksandra & Rynkiewicz, Andrzej & Zwierz, Marcin, 2006. "Long-range dependencies in heart rate signals—revisited," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 369(2), pages 632-644.
    5. Sarker, Alivia & Mali, Provash, 2021. "Detrended multifractal characterization of Indian rainfall records," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    6. Lee, Hojin & Chang, Woojin, 2015. "Multifractal regime detecting method for financial time series," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 117-129.
    7. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    8. Provash Mali & Amitabha Mukhopadhyay, 2015. "Multifractal characterization of gold market: a multifractal detrended fluctuation analysis," Papers 1506.08847, arXiv.org.
    9. Hasan, Rashid & Mohammad, Salim M., 2015. "Multifractal analysis of Asian markets during 2007–2008 financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 746-761.
    10. Chen, Feier & Tian, Kang & Ding, Xiaoxu & Miao, Yuqi & Lu, Chunxia, 2016. "Finite-size effect and the components of multifractality in transport economics volatility based on multifractal detrending moving average method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 1058-1066.
    11. Brandi, Giuseppe & Di Matteo, T., 2022. "Multiscaling and rough volatility: An empirical investigation," International Review of Financial Analysis, Elsevier, vol. 84(C).
    12. Eisler, Z. & Kertész, J., 2004. "Multifractal model of asset returns with leverage effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 343(C), pages 603-622.
    13. Arshad, Shaista & Rizvi, Syed Aun R. & Haroon, Omair & Mehmood, Fahad & Gong, Qiang, 2021. "Are oil prices efficient?," Economic Modelling, Elsevier, vol. 96(C), pages 362-370.
    14. Arshad, Shaista & Rizvi, Syed Aun R. & Haroon, Omair, 2020. "Impact of Brexit vote on the London stock exchange: A sectorial analysis of its volatility and efficiency," Finance Research Letters, Elsevier, vol. 34(C).
    15. Cristina Sattarhoff & Marc Gronwald, 2018. "How to Measure Financial Market Efficiency? A Multifractality-Based Quantitative Approach with an Application to the European Carbon Market," CESifo Working Paper Series 7102, CESifo.
    16. Saâdaoui, Foued, 2023. "Skewed multifractal scaling of stock markets during the COVID-19 pandemic," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    17. Xiong, Gang & Yu, Wenxian & Xia, Wenxiang & Zhang, Shuning, 2016. "Multifractal signal reconstruction based on singularity power spectrum," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 25-32.
    18. Wei, Yu & Wang, Yudong & Huang, Dengshi, 2011. "A copula–multifractal volatility hedging model for CSI 300 index futures," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4260-4272.
    19. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    20. Zunino, L. & Tabak, B.M. & Figliola, A. & Pérez, D.G. & Garavaglia, M. & Rosso, O.A., 2008. "A multifractal approach for stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6558-6566.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:481:y:2017:i:c:p:11-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.