IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-03210477.html
   My bibliography  Save this paper

Pression Fiscale Optimale et Croissance Economique en République Démocratique du Congo : 1990 -2020

Author

Listed:
  • Elie Ndemba Tshilambu

    (UPC - Université protestante au Congo)

Abstract

L'objectif du présent article est d'analyser le rôle de la fiscalité et mesurer l'effet de celle-ci à travers son impact sur le capital public, dans la croissance économique en République Démocratique du Congo en s'appuyant sur le modèle de croissance endogène de Barro (1990) et à déterminer le taux optimal de pression fiscale à travers l'estimation du modèle de SCULLY. L'interaction entre la fiscalité et la croissance pourrait avoir une allure non linéaire, sous la forme d'une courbe de LAFFER, le test Hansen va servir à montrer l'effet de seuil dans la relation non linéaire entre la pression fiscale et la croissance économique. Un modèle ARDL a été estimé sur la période 1990-2020 pour analyser la dynamique de ces deux variables. Les résultats obtenus vont dans le sens d'une relation croissante entre la fiscalité et la croissance économique en RDC. Ainsi, à travers l'impôt, les ménages contribuent au financement du capital public qui conduit in fine à améliorer la croissance économique. Il en est ressorti de cette étude que les niveaux des composantes fiscales observés n'ont pas été efficients et optimaux par rapport aux taux de croissance économique observés en RDC durant la période 1990-2020. L'estimation du modèle de SCULLY révèle qu'avec un niveau de 23% de pression fiscale, on peut avoir une croissance économique soutenue.

Suggested Citation

  • Elie Ndemba Tshilambu, 2021. "Pression Fiscale Optimale et Croissance Economique en République Démocratique du Congo : 1990 -2020," Working Papers hal-03210477, HAL.
  • Handle: RePEc:hal:wpaper:hal-03210477
    Note: View the original document on HAL open archive server: https://hal.science/hal-03210477
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03210477/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    2. Sinha, Dipendra & Sinha, Tapen, 2007. "Toda and Yamamoto Causality Tests Between Per Capita Saving and Per Capita GDP for India," MPRA Paper 2564, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akosah, Nana Kwame & Alagidede, Imhotep Paul & Schaling, Eric, 2020. "Testing for asymmetry in monetary policy rule for small-open developing economies: Multiscale Bayesian quantile evidence from Ghana," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    2. Kelly Burns & Imad Moosa, 2017. "Demystifying the Meese–Rogoff puzzle: structural breaks or measures of forecasting accuracy?," Applied Economics, Taylor & Francis Journals, vol. 49(48), pages 4897-4910, October.
    3. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    4. J. Cuñado & L. Gil-Alana & F. Gracia, 2009. "US stock market volatility persistence: evidence before and after the burst of the IT bubble," Review of Quantitative Finance and Accounting, Springer, vol. 33(3), pages 233-252, October.
    5. Vincent Dekker & Karsten Schweikert, 2021. "A Comparison of Different Data-driven Procedures to Determine the Bunching Window," Public Finance Review, , vol. 49(2), pages 262-293, March.
    6. Kar, Sabyasachi & Pritchett, Lant & Raihan, Selim & Sen, Kunal, 2013. "Looking for a break: Identifying transitions in growth regimes," Journal of Macroeconomics, Elsevier, vol. 38(PB), pages 151-166.
    7. Mariam Camarero & Juan Sapena & Cecilio Tamarit, 2020. "Modelling Time-Varying Parameters in Panel Data State-Space Frameworks: An Application to the Feldstein–Horioka Puzzle," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 87-114, June.
    8. Bernard, Jean-Thomas & Idoudi, Nadhem & Khalaf, Lynda & Yelou, Clement, 2007. "Finite sample multivariate structural change tests with application to energy demand models," Journal of Econometrics, Elsevier, vol. 141(2), pages 1219-1244, December.
    9. Anne Morrison Piehl & Suzanne J. Cooper & Anthony A. Braga & David M. Kennedy, 2003. "Testing for Structural Breaks in the Evaluation of Programs," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 550-558, August.
    10. Antonia López Villavicencio & Josep Lluís Raymond Bara, 2006. "The short and long-run determinants of the real exchange rate in Mexico," Working Papers wpdea0606, Department of Applied Economics at Universitat Autonoma of Barcelona.
    11. Garrod Brian & Almeida António & Machado Luiz, 2023. "Modelling of nonlinear asymmetric effects of changes in tourism on economic growth in an autonomous small-island economy," European Journal of Tourism, Hospitality and Recreation, Sciendo, vol. 13(2), pages 154-172, December.
    12. Gupta, Kuhika & Nowlin, Matthew C. & Ripberger, Joseph T. & Jenkins-Smith, Hank C. & Silva, Carol L., 2019. "Tracking the nuclear ‘mood’ in the United States: Introducing a long term measure of public opinion about nuclear energy using aggregate survey data," Energy Policy, Elsevier, vol. 133(C).
    13. Kevin S. Nell & Maria M. De Mello, 2019. "The interdependence between the saving rate and technology across regimes: evidence from South Africa," Empirical Economics, Springer, vol. 56(1), pages 269-300, January.
    14. Ngene, Geoffrey & Tah, Kenneth A. & Darrat, Ali F., 2017. "Long memory or structural breaks: Some evidence for African stock markets," Review of Financial Economics, Elsevier, vol. 34(C), pages 61-73.
    15. Parma Chakravartti & Sudipto Mundle, 2017. "An Automatic Leading Indicator Based Growth Forecast For 2016-17 and The Outlook Beyond," Working Papers id:11773, eSocialSciences.
    16. Shernaz Bodhanwala & Harsh Purohit & Nidhi Choudhary, 2020. "The Causal Dynamics in Indian Agriculture Commodity Prices and Macro-Economic Variables in the Presence of a Structural Break," Global Business Review, International Management Institute, vol. 21(1), pages 241-261, February.
    17. Meng Xu & Avishai Ceder & Ziyou Gao & Wei Guan, 2010. "Mass transit systems of Beijing: governance evolution and analysis," Transportation, Springer, vol. 37(5), pages 709-729, September.
    18. Brown, William Jr. & Burdekin, Richard C.K. & Weidenmier, Marc D., 2006. "Volatility in an era of reduced uncertainty: Lessons from Pax Britannica," Journal of Financial Economics, Elsevier, vol. 79(3), pages 693-707, March.
    19. Stephen G Cecchetti & Alfonso Flores-Lagunes & Stefan Krause, 2005. "Assessing the Sources of Changes in the Volatility of Real Growth," RBA Annual Conference Volume (Discontinued), in: Christopher Kent & David Norman (ed.),The Changing Nature of the Business Cycle, Reserve Bank of Australia.
    20. Afonso, António & Coelho, José Carlos, 2024. "Drivers of fiscal sustainability: A time-varying analysis for Portugal," International Economics, Elsevier, vol. 178(C).

    More about this item

    Keywords

    Politique Budgétaire; Croissance économique; Pression fiscale Classification JEL : E62; E22; O40; C11;
    All these keywords.

    JEL classification:

    • E62 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Fiscal Policy; Modern Monetary Theory
    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
    • O40 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-03210477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.