IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-02945376.html
   My bibliography  Save this paper

Wheat Futures Trading Volume Forecasting and the Value of Extended Trading Hours

Author

Listed:
  • Joseph P Janzen

    (UIUC - University of Illinois at Urbana-Champaign [Urbana] - University of Illinois System)

  • Nicolas Legrand

    (SMART-LERECO - Structures et Marché Agricoles, Ressources et Territoires - INRA - Institut National de la Recherche Agronomique - AGROCAMPUS OUEST)

Abstract

Electronic trading in modern commodity markets has extended trading hours, lowered barriers to listing new contracts, broadened participation internationally, and encouraged entry of new trader types, particularly algorithmic traders whose order execution is automated. This paper seeks to understand how these forces have shaped the quantity and timing of trading activity, using the world's multiple wheat futures markets as a laboratory. To do so, we extend existing models for forecasting trading volume found in the literature on volume weighted average price (VWAP) order execution (e.g. Bialkowski, et al 2008 and Humphery-Jenner 2011) to applications beyond trading algorithm design. We consider a setting with multiple trading venues for related commodities, specifically the front-month Chicago Mercantile Exchange Soft Red Wheat and Paris Euronext Milling Wheat futures contracts. We compare a series of nested forecasting models to infer whether past trading history, intraday volume dynamics, cross market trading activity, and other information are useful predictors of trading activity. We assess the value of extended trading hours and the existence of alternative trading venues by testing whether trading volume is more predictable at particular times throughout the trading day.

Suggested Citation

  • Joseph P Janzen & Nicolas Legrand, 2019. "Wheat Futures Trading Volume Forecasting and the Value of Extended Trading Hours," Working Papers hal-02945376, HAL.
  • Handle: RePEc:hal:wpaper:hal-02945376
    Note: View the original document on HAL open archive server: https://hal.inrae.fr/hal-02945376v1
    as

    Download full text from publisher

    File URL: https://hal.inrae.fr/hal-02945376v1/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bialkowski, Jedrzej & Darolles, Serge & Le Fol, Gaëlle, 2008. "Improving VWAP strategies: A dynamic volume approach," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1709-1722, September.
    2. repec:bla:jfinan:v:43:y:1988:i:1:p:97-112 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Darolles, Serge & Le Fol, Gaëlle & Mero, Gulten, 2017. "Mixture of distribution hypothesis: Analyzing daily liquidity frictions and information flows," Journal of Econometrics, Elsevier, vol. 201(2), pages 367-383.
    2. Fong, Kingsley Y.L. & Liu, Wai-Man, 2010. "Limit order revisions," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1873-1885, August.
    3. Jedrzej Bialkowski & Serge Darolles & Gaëlle Le Fol, 2012. "Reducing the risk of VWAP orders execution - A new approach to modeling intra-day volume," Post-Print hal-01632822, HAL.
    4. Darolles, Serge & Fol, Gaëlle Le & Mero, Gulten, 2015. "Measuring the liquidity part of volume," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 92-105.
    5. Alexander Malinowski & Martin Schlather & Zhengjun Zhang, 2016. "Intrinsically weighted means and non-ergodic marked point processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 68(1), pages 1-24, February.
    6. Serge Darolles & Gaëlle Le Fol, 2003. "Trading Volume and Arbitrage," Working Papers 2003-46, Center for Research in Economics and Statistics.
    7. Ferriani, Fabrizio, 2010. "Informed and uninformed traders at work: evidence from the French market," MPRA Paper 24487, University Library of Munich, Germany.
    8. Humphery-Jenner, M., 2011. "High Frequency Trading, Information, and Takeovers," Other publications TiSEM 30aa1477-0fb2-46ed-a5eb-f, Tilburg University, School of Economics and Management.
    9. Humphery-Jenner, M., 2011. "High Frequency Trading, Information, and Takeovers," Other publications TiSEM 0e6dd147-6f57-4f32-b265-f, Tilburg University, School of Economics and Management.
    10. Soohan Kim & Jimyeong Kim & Hong Kee Sul & Youngjoon Hong, 2023. "An Adaptive Dual-level Reinforcement Learning Approach for Optimal Trade Execution," Papers 2307.10649, arXiv.org.
    11. Enzo Busseti & Stephen Boyd, 2015. "Volume Weighted Average Price Optimal Execution," Papers 1509.08503, arXiv.org.
    12. Ye, Xunyu & Gao, Ping & Li, Handong, 2015. "Improving estimation of the fractionally differencing parameter in the SARFIMA model using tapered periodogram," Economic Modelling, Elsevier, vol. 46(C), pages 167-179.
    13. Ito, R., 2016. "Spline-DCS for Forecasting Trade Volume in High-Frequency Finance," Cambridge Working Papers in Economics 1606, Faculty of Economics, University of Cambridge.
    14. Humphery-Jenner, M., 2011. "High Frequency Trading, Information, and Takeovers," Discussion Paper 2011-047, Tilburg University, Center for Economic Research.
    15. Li, Yingying & Xie, Shangyu & Zheng, Xinghua, 2016. "Efficient estimation of integrated volatility incorporating trading information," Journal of Econometrics, Elsevier, vol. 195(1), pages 33-50.
    16. Gulten Mero & Serge Darolles & Gaëlle Le Fol, 2015. "Financial Market Liquidity: Who Is Acting Strategically?," THEMA Working Papers 2015-14, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    17. Nino Antulov-Fantulin & Tian Guo & Fabrizio Lillo, 2021. "Temporal mixture ensemble models for probabilistic forecasting of intraday cryptocurrency volume," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 905-940, December.
    18. Seung Hwan Jeong & Hee Soo Lee & Hyun Nam & Kyong Joo Oh, 2021. "Using a Genetic Algorithm to Build a Volume Weighted Average Price Model in a Stock Market," Sustainability, MDPI, vol. 13(3), pages 1-16, January.
    19. Yang, Yaxing & Ling, Shiqing, 2017. "Self-weighted LAD-based inference for heavy-tailed threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 197(2), pages 368-381.
    20. Clements, Adam & Hurn, Stan & Volkov, Vladimir, 2021. "A simple linear alternative to multiplicative error models with an application to trading volume," Working Papers 2021-06, University of Tasmania, Tasmanian School of Business and Economics.

    More about this item

    Keywords

    Trading hours; High-frequency data; Volume predictions;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-02945376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.