IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01256869.html
   My bibliography  Save this paper

Explicit diversification benefit for dependent risks

Author

Listed:
  • Michel Dacorogna

    (SCOR SE - SCOR SE [Paris])

  • Laila Elbahtouri

    (SCOR SE - SCOR SE [Paris])

  • Marie Kratz

    (ESSEC Business School)

Abstract

We propose a new approach to analyse the effect of diversification on a portfolio of risks. By means of mixing techniques, we provide an explicit formula for the probability density function of the portfolio. These techniques allow to compute analytically risk measures as VaR or TVaR, and consequently the associated diversification benefit. The explicit formulas constitute ideal tools to analyse the properties of risk measures and diversification benefit. We use standard models, which are popular in the reinsurance industry, Archimedean survival copulas and heavy tailed marginals. We explore numerically their behavior and compare them to the aggregation of independent random variables, as well as of linearly dependent ones. Moreover, the numerical convergence of Monte Carlo simulations of various quantities is tested against the analytical result. The speed of convergence appears to depend on the fatness of the tail; the higher the tail index, the faster the convergence.

Suggested Citation

  • Michel Dacorogna & Laila Elbahtouri & Marie Kratz, 2015. "Explicit diversification benefit for dependent risks," Working Papers hal-01256869, HAL.
  • Handle: RePEc:hal:wpaper:hal-01256869
    Note: View the original document on HAL open archive server: https://essec.hal.science/hal-01256869
    as

    Download full text from publisher

    File URL: https://essec.hal.science/hal-01256869/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011. "Explicit ruin formulas for models with dependence among risks," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
    2. Groenendijk, Patrick A. & Lucas, André & Vries, Casper G. de, 1997. "Stochastic processes, non-normal innovations, and the use of scaling ratios," Serie Research Memoranda 0058, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cuberos A. & Masiello E. & Maume-Deschamps V., 2015. "High level quantile approximations of sums of risks," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    2. Corina Constantinescu & Suhang Dai & Weihong Ni & Zbigniew Palmowski, 2016. "Ruin Probabilities with Dependence on the Number of Claims within a Fixed Time Window," Risks, MDPI, vol. 4(2), pages 1-23, June.
    3. repec:hal:wpaper:hal-00746251 is not listed on IDEAS
    4. Loisel, Stéphane & Trufin, Julien, 2014. "Properties of a risk measure derived from the expected area in red," Insurance: Mathematics and Economics, Elsevier, vol. 55(C), pages 191-199.
    5. Emilio Gómez-Déniz & Jorge V. Pérez-Rodríguez & Simón Sosvilla-Rivero, 2022. "Analyzing How the Social Security Reserve Fund in Spain Affects the Sustainability of the Pension System," Risks, MDPI, vol. 10(6), pages 1-17, June.
    6. Constantinescu, Corina & Hashorva, Enkelejd & Ji, Lanpeng, 2011. "Archimedean copulas in finite and infinite dimensions—with application to ruin problems," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 487-495.
    7. Florin Avram & Romain Biard & Christophe Dutang & Stéphane Loisel & Landy Rabehasaina, 2014. "A survey of some recent results on Risk Theory," Post-Print hal-01616178, HAL.
    8. Cuberos A. & Masiello E. & Maume-Deschamps V., 2015. "High level quantile approximations of sums of risks," Dependence Modeling, De Gruyter, vol. 3(1), pages 1-18, October.
    9. Furman, Edward & Kye, Yisub & Su, Jianxi, 2021. "Multiplicative background risk models: Setting a course for the idiosyncratic risk factors distributed phase-type," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 153-167.
    10. Zhimin Zhang & Hailiang Yang & Hu Yang, 2012. "On a Sparre Andersen Risk Model with Time-Dependent Claim Sizes and Jump-Diffusion Perturbation," Methodology and Computing in Applied Probability, Springer, vol. 14(4), pages 973-995, December.
    11. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    12. Yujuan Huang & Jing Li & Hengyu Liu & Wenguang Yu, 2021. "Estimating Ruin Probability in an Insurance Risk Model with Stochastic Premium Income Based on the CFS Method," Mathematics, MDPI, vol. 9(9), pages 1-17, April.
    13. Caroline Hillairet & Ying Jiao & Anthony Réveillac, 2017. "Pricing formulae for derivatives in insurance using the Malliavin calculus ," Working Papers hal-01561987, HAL.
    14. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Papers 2103.10989, arXiv.org.
    15. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Copulas and related properties," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 109-121.
    16. Muhsin Tamturk & Dominic Cortis & Mark Farrell, 2020. "Examining the Effects of Gradual Catastrophes on Capital Modelling and the Solvency of Insurers: The Case of COVID-19," Risks, MDPI, vol. 8(4), pages 1-13, December.
    17. Emilio Gómez-Déniz & José María Sarabia & Enrique Calderín-Ojeda, 2019. "Ruin Probability Functions and Severity of Ruin as a Statistical Decision Problem," Risks, MDPI, vol. 7(2), pages 1-16, June.
    18. Fouad Marri & Khouzeima Moutanabbir, 2021. "Risk aggregation and capital allocation using a new generalized Archimedean copula," Working Papers hal-03169291, HAL.
    19. Hengxin Cui & Ken Seng Tan & Fan Yang, 2024. "Portfolio credit risk with Archimedean copulas: asymptotic analysis and efficient simulation," Papers 2411.06640, arXiv.org.
    20. Xie, Jiehua & Lin, Feng & Yang, Jingping, 2017. "On a generalization of Archimedean copula family," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 121-129.
    21. Youri Raaijmakers & Hansjörg Albrecher & Onno Boxma, 2019. "The Single Server Queue with Mixing Dependencies," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1023-1044, December.

    More about this item

    Keywords

    Aggregation of risks; Archimedean copula; Clayton; Diversification (benefit); Gaussian; Gumbel; Heavy tail; Mixing technique; Pareto; Risk measure; TVaR; VaR; Weibull;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01256869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.