IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v2y2014i3p277-288d38449.html
   My bibliography  Save this article

Random Shifting and Scaling of Insurance Risks

Author

Listed:
  • Enkelejd Hashorva

    (Department of Actuarial Science, University of Lausanne, Bâtiment Extranef, UNIL-Dorigny, Lausanne 1015, Switzerland)

  • Lanpeng Ji

    (Department of Actuarial Science, University of Lausanne, Bâtiment Extranef, UNIL-Dorigny, Lausanne 1015, Switzerland)

Abstract

Random shifting typically appears in credibility models whereas random scaling is often encountered in stochastic models for claim sizes reflecting the time-value property of money. In this article we discuss some aspects of random shifting and random scaling of insurance risks focusing in particular on credibility models, dependence structure of claim sizes in collective risk models, and extreme value models for the joint dependence of large losses. We show that specifying certain actuarial models using random shifting or scaling has some advantages for both theoretical treatments and practical applications.

Suggested Citation

  • Enkelejd Hashorva & Lanpeng Ji, 2014. "Random Shifting and Scaling of Insurance Risks," Risks, MDPI, vol. 2(3), pages 1-12, July.
  • Handle: RePEc:gam:jrisks:v:2:y:2014:i:3:p:277-288:d:38449
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/2/3/277/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/2/3/277/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Albrecher, Hansjörg & Constantinescu, Corina & Loisel, Stephane, 2011. "Explicit ruin formulas for models with dependence among risks," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 265-270, March.
    2. Frees, Edward W. & Valdez, Emiliano A., 2008. "Hierarchical Insurance Claims Modeling," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1457-1469.
    3. Alexandru V. Asimit & Raluca Vernic & Riċardas Zitikis, 2013. "Evaluating Risk Measures and Capital Allocations Based on Multi-Losses Driven by a Heavy-Tailed Background Risk: The Multivariate Pareto-II Model," Risks, MDPI, vol. 1(1), pages 1-20, March.
    4. Hashorva, Enkelejd & Kortschak, Dominik, 2014. "Tail asymptotics of random sum and maximum of log-normal risks," Statistics & Probability Letters, Elsevier, vol. 87(C), pages 167-174.
    5. Yang, Yang & Hashorva, Enkelejd, 2013. "Extremes and products of multivariate AC-product risks," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 312-319.
    6. Kume, Alfred & Hashorva, Enkelejd, 2012. "Calculation of Bayes premium for conditional elliptical risks," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 632-635.
    7. Yang, Xipei & Frees, Edward W. & Zhang, Zhengjun, 2011. "A generalized beta copula with applications in modeling multivariate long-tailed data," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 265-284, September.
    8. Cambanis, Stamatis & Huang, Steel & Simons, Gordon, 1981. "On the theory of elliptically contoured distributions," Journal of Multivariate Analysis, Elsevier, vol. 11(3), pages 368-385, September.
    9. Constantinescu, Corina & Hashorva, Enkelejd & Ji, Lanpeng, 2011. "Archimedean copulas in finite and infinite dimensions—with application to ruin problems," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 487-495.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Claude Lefèvre & Matthieu Simon, 2021. "Schur-Constant and Related Dependence Models, with Application to Ruin Probabilities," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 317-339, March.
    2. Claude Lefèvre & Stéphane Loisel & Pierre Montesinos, 2020. "Bounding Basis-Risk Using s-convex Orders on Beta-unimodal Distributions," Post-Print hal-02611227, HAL.
    3. Mercè Claramunt, M. & Lefèvre, Claude & Loisel, Stéphane & Montesinos, Pierre, 2022. "Basis risk management and randomly scaled uncertainty," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 123-139.
    4. Alexandru V. Asimit & Raluca Vernic & Ricardas Zitikis, 2016. "Background Risk Models and Stepwise Portfolio Construction," Methodology and Computing in Applied Probability, Springer, vol. 18(3), pages 805-827, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marri, Fouad & Furman, Edward, 2012. "Pricing compound Poisson processes with the Farlie–Gumbel–Morgenstern dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 151-157.
    2. Arendarczyk, Marek & Kozubowski, Tomasz. J. & Panorska, Anna K., 2018. "The joint distribution of the sum and maximum of dependent Pareto risks," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 136-156.
    3. Dutang, C. & Lefèvre, C. & Loisel, S., 2013. "On an asymptotic rule A+B/u for ultimate ruin probabilities under dependence by mixing," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 774-785.
    4. Furman, Edward & Kuznetsov, Alexey & Zitikis, Ričardas, 2018. "Weighted risk capital allocations in the presence of systematic risk," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 75-81.
    5. Su, Jianxi & Furman, Edward, 2017. "Multiple risk factor dependence structures: Copulas and related properties," Insurance: Mathematics and Economics, Elsevier, vol. 74(C), pages 109-121.
    6. Jeong, Himchan & Valdez, Emiliano A., 2020. "Predictive compound risk models with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 182-195.
    7. Youri Raaijmakers & Hansjörg Albrecher & Onno Boxma, 2019. "The Single Server Queue with Mixing Dependencies," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1023-1044, December.
    8. Castañer, A. & Claramunt, M.M. & Lefèvre, C. & Loisel, S., 2015. "Discrete Schur-constant models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 343-362.
    9. Jianxi Su & Edward Furman, 2016. "Multiple risk factor dependence structures: Copulas and related properties," Papers 1610.02126, arXiv.org.
    10. Constantinescu Corina D. & Kozubowski Tomasz J. & Qian Haoyu H., 2019. "Probability of ruin in discrete insurance risk model with dependent Pareto claims," Dependence Modeling, De Gruyter, vol. 7(1), pages 215-233, January.
    11. Tzougas, George & Jeong, Himchan, 2021. "An expectation-maximization algorithm for the exponential-generalized inverse Gaussian regression model with varying dispersion and shape for modelling the aggregate claim amount," LSE Research Online Documents on Economics 108210, London School of Economics and Political Science, LSE Library.
    12. George Tzougas & Himchan Jeong, 2021. "An Expectation-Maximization Algorithm for the Exponential-Generalized Inverse Gaussian Regression Model with Varying Dispersion and Shape for Modelling the Aggregate Claim Amount," Risks, MDPI, vol. 9(1), pages 1-17, January.
    13. Raluca Vernic, 2017. "Capital Allocation for Sarmanov’s Class of Distributions," Methodology and Computing in Applied Probability, Springer, vol. 19(1), pages 311-330, March.
    14. Pai, Jeffrey & Li, Yunxian & Yang, Aijun & Li, Chenxu, 2022. "Earthquake parametric insurance with Bayesian spatial quantile regression," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 1-12.
    15. Franc{c}ois Dufresne & Enkelejd Hashorva & Gildas Ratovomirija & Youssouf Toukourou, 2016. "On bivariate lifetime modelling in life insurance applications," Papers 1601.04351, arXiv.org.
    16. Manel Kacem & Stéphane Loisel & Véronique Maume-Deschamps, 2016. "Some mixing properties of conditionally independent processes," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(5), pages 1241-1259, March.
    17. Shi, Peng, 2012. "Multivariate longitudinal modeling of insurance company expenses," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 204-215.
    18. Castañer, A. & Claramunt, M.M. & Lefèvre, C. & Loisel, S., 2015. "Discrete Schur-constant models," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 343-362.
    19. Claude Lefèvre & Matthieu Simon, 2021. "Schur-Constant and Related Dependence Models, with Application to Ruin Probabilities," Methodology and Computing in Applied Probability, Springer, vol. 23(1), pages 317-339, March.
    20. Falk, Michael, 1998. "A Note on the Comedian for Elliptical Distributions," Journal of Multivariate Analysis, Elsevier, vol. 67(2), pages 306-317, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:2:y:2014:i:3:p:277-288:d:38449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.