IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01230621.html
   My bibliography  Save this paper

Robust location of new housing developments using a choice model

Author

Listed:
  • Juan Carlos Espinoza Garcia

    (ESSEC Business School)

  • Laurent Alfandari

    (ESSEC Business School)

Abstract

We consider the issue of choosing a subset of locations to construct new housing developments maximizing the satisfaction of potential buyers. The allocation of demands to the selected locations is modeled by a choice model, based on the distance to the location, real-estate prices and incomes. We study two robust counterparts of the optimal location problem, where uncertainty lies on demand volumes for the rst one, and on customer preferences for the second one. In both cases, the parameters subject to uncertainty appear both in the objective function and constraints. The second robust model combines a scenario-based approach with nominal, price-centric and distance-centric scenarios on customers preferences, and an uncertainty budget approach that limits the number of cities that can deviate from the nominal scenario. Computational experiments are conducted on instances of the Paris region to analyze the tractability of the problem and its robust counterparts, and derive insights for the new housing development issue.

Suggested Citation

  • Juan Carlos Espinoza Garcia & Laurent Alfandari, 2015. "Robust location of new housing developments using a choice model," Working Papers hal-01230621, HAL.
  • Handle: RePEc:hal:wpaper:hal-01230621
    Note: View the original document on HAL open archive server: https://essec.hal.science/hal-01230621
    as

    Download full text from publisher

    File URL: https://essec.hal.science/hal-01230621/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Palma, Andre & Picard, Nathalie & Waddell, Paul, 2007. "Discrete choice models with capacity constraints: An empirical analysis of the housing market of the greater Paris region," Journal of Urban Economics, Elsevier, vol. 62(2), pages 204-230, September.
    2. Virginie Gabrel & Cécile Murat & Lei Wu, 2013. "New models for the robust shortest path problem: complexity, resolution and generalization," Annals of Operations Research, Springer, vol. 207(1), pages 97-120, August.
    3. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    4. Peter M. Guadagni & John D. C. Little, 1983. "A Logit Model of Brand Choice Calibrated on Scanner Data," Marketing Science, INFORMS, vol. 2(3), pages 203-238.
    5. Haase, Knut & Müller, Sven, 2014. "A comparison of linear reformulations for multinomial logit choice probabilities in facility location models," European Journal of Operational Research, Elsevier, vol. 232(3), pages 689-691.
    6. Gülpınar, Nalan & Pachamanova, Dessislava & Çanakoğlu, Ethem, 2013. "Robust strategies for facility location under uncertainty," European Journal of Operational Research, Elsevier, vol. 225(1), pages 21-35.
    7. V Gabrel & C Murat, 2010. "Robustness and duality in linear programming," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(8), pages 1288-1296, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jang, Hoon & Hwang, Kyosang & Lee, Taeho & Lee, Taesik, 2019. "Designing robust rollout plan for better rural perinatal care system in Korea," European Journal of Operational Research, Elsevier, vol. 274(2), pages 730-742.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan Carlos Espinoza Garcia & Laurent Alfandari, 2018. "Robust location of new housing developments using a choice model," Annals of Operations Research, Springer, vol. 271(2), pages 527-550, December.
    2. Espinoza Garcia, Juan Carlos & Alfandari, Laurent, 2015. "Robust location of new housing developments using a choice model," ESSEC Working Papers WP1521, ESSEC Research Center, ESSEC Business School.
    3. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    4. Hanks, Robert W. & Weir, Jeffery D. & Lunday, Brian J., 2017. "Robust goal programming using different robustness echelons via norm-based and ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 262(2), pages 636-646.
    5. Shuming Wang & Tsan Sheng Ng & Manyu Wong, 2016. "Expansion planning for waste‐to‐energy systems using waste forecast prediction sets," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(1), pages 47-70, February.
    6. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    7. Laurent Alfandari & Victoire Denoyel & Aurélie Thiele, 2020. "Solving utility-maximization selection problems with Multinomial Logit demand: Is the First-Choice model a good approximation?," Annals of Operations Research, Springer, vol. 292(1), pages 553-573, September.
    8. Jang, Hoon & Hwang, Kyosang & Lee, Taeho & Lee, Taesik, 2019. "Designing robust rollout plan for better rural perinatal care system in Korea," European Journal of Operational Research, Elsevier, vol. 274(2), pages 730-742.
    9. Tereza Sedlářová Nehézová & Michal Škoda & Robert Hlavatý & Helena Brožová, 2022. "Fuzzy and robust approach for decision-making in disaster situations," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 617-645, June.
    10. Keyvanshokooh, Esmaeil & Ryan, Sarah M. & Kabir, Elnaz, 2016. "Hybrid robust and stochastic optimization for closed-loop supply chain network design using accelerated Benders decomposition," European Journal of Operational Research, Elsevier, vol. 249(1), pages 76-92.
    11. Venkatesh Shankar & Pablo Azar & Matthew Fuller, 2008. "—: A Multicategory Brand Equity Model and Its Application at Allstate," Marketing Science, INFORMS, vol. 27(4), pages 567-584, 07-08.
    12. Cambier, Adrien & Chardy, Matthieu & Figueiredo, Rosa & Ouorou, Adam & Poss, Michael, 2022. "Optimizing subscriber migrations for a telecommunication operator in uncertain context," European Journal of Operational Research, Elsevier, vol. 298(1), pages 308-321.
    13. Noah Gans & George Knox & Rachel Croson, 2007. "Simple Models of Discrete Choice and Their Performance in Bandit Experiments," Manufacturing & Service Operations Management, INFORMS, vol. 9(4), pages 383-408, December.
    14. Chen Zhou & Shrihari Sridhar & Rafael Becerril-Arreola & Tony Haitao Cui & Yan Dong, 2019. "Promotions as competitive reactions to recalls and their consequences," Journal of the Academy of Marketing Science, Springer, vol. 47(4), pages 702-722, July.
    15. David R. Bell & Jeongwen Chiang & V. Padmanabhan, 1999. "The Decomposition of Promotional Response: An Empirical Generalization," Marketing Science, INFORMS, vol. 18(4), pages 504-526.
    16. Freire, Alexandre S. & Moreno, Eduardo & Yushimito, Wilfredo F., 2016. "A branch-and-bound algorithm for the maximum capture problem with random utilities," European Journal of Operational Research, Elsevier, vol. 252(1), pages 204-212.
    17. Polo, Yolanda & Sese, F. Javier & Verhoef, Peter C., 2011. "The Effect of Pricing and Advertising on Customer Retention in a Liberalizing Market," Journal of Interactive Marketing, Elsevier, vol. 25(4), pages 201-214.
    18. Yücel, Eda & Karaesmen, Fikri & Salman, F. Sibel & Türkay, Metin, 2009. "Optimizing product assortment under customer-driven demand substitution," European Journal of Operational Research, Elsevier, vol. 199(3), pages 759-768, December.
    19. Sarhadi, Hassan & Naoum-Sawaya, Joe & Verma, Manish, 2020. "A robust optimization approach to locating and stockpiling marine oil-spill response facilities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    20. Lin, Yun Hui & Wang, Yuan & He, Dongdong & Lee, Loo Hay, 2020. "Last-mile delivery: Optimal locker location under multinomial logit choice model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).

    More about this item

    Keywords

    Housing; Robust Optimization; Multinomial Logit Choice Models; Facility Location;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01230621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.