IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-01081470.html
   My bibliography  Save this paper

Parameter estimation for stochastic diffusion process

Author

Listed:
  • Elotma H

    (Faculté des Sciences Semlalia [Marrakech] - UCA - Université Cadi Ayyad [Marrakech])

Abstract

. In the present paper we propose a new stochastic diffusion process with drift proportional to the Weibull density function defined as X $\epsilon$ = x, dX t = $\gamma$ t (1 - t $\gamma$+1) - t $\gamma$ X t dt + $\sigma$X t dB t , t \textgreater{} 0, with parameters $\gamma$ \textgreater{} 0 and $\sigma$ \textgreater{} 0, where B is a standard Brownian motion and t = $\epsilon$ is a time proche to zero. First we interested to probabilistic solution of this process as the explicit expression of this process. By using the maximum likelihood method and by considering a discrete sampling of the sample of the new process we estimate the parameters $\gamma$ and $\sigma$.

Suggested Citation

  • Elotma H, 2015. "Parameter estimation for stochastic diffusion process," Working Papers hal-01081470, HAL.
  • Handle: RePEc:hal:wpaper:hal-01081470
    Note: View the original document on HAL open archive server: https://hal.science/hal-01081470v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01081470v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yoshida, Nakahiro, 1992. "Estimation for diffusion processes from discrete observation," Journal of Multivariate Analysis, Elsevier, vol. 41(2), pages 220-242, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruni, M.E. & Khodaparasti, S. & Beraldi, P., 2020. "The selective minimum latency problem under travel time variability: An application to post-disaster assessment operations," Omega, Elsevier, vol. 92(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Konstantin P. Belyaev & Andrey K. Gorshenin & Victor Yu. Korolev & Anastasiia A. Osipova, 2024. "Comparison of Statistical Approaches for Reconstructing Random Coefficients in the Problem of Stochastic Modeling of Air–Sea Heat Flux Increments," Mathematics, MDPI, vol. 12(2), pages 1-21, January.
    2. Shoji, Isao, 1997. "A note on asymptotic properties of the estimator derived from the Euler method for diffusion processes at discrete times," Statistics & Probability Letters, Elsevier, vol. 36(2), pages 153-159, December.
    3. De Gregorio, A. & Iacus, S.M., 2013. "On a family of test statistics for discretely observed diffusion processes," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.
    4. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    5. Qinwen Zhu & Hui Liu & Chengfeng Sun, 2019. "Edgeworth Expansion For The Distribution Of The Maximum Likelihood Estimate In The Vasicek Model," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-26, March.
    6. Diks, Cees & Wang, Juanxi, 2016. "Can a stochastic cusp catastrophe model explain housing market crashes?," Journal of Economic Dynamics and Control, Elsevier, vol. 69(C), pages 68-88.
    7. Stan Hurn & J.Jeisman & K.A. Lindsay, 2006. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations. Working paper #2," NCER Working Paper Series 2, National Centre for Econometric Research.
    8. Chiara Amorino & Arnaud Gloter, 2020. "Contrast function estimation for the drift parameter of ergodic jump diffusion process," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(2), pages 279-346, June.
    9. Yuma Uehara, 2023. "Bootstrap method for misspecified ergodic Lévy driven stochastic differential equation models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(4), pages 533-565, August.
    10. Kou Fujimori, 2019. "The Dantzig selector for a linear model of diffusion processes," Statistical Inference for Stochastic Processes, Springer, vol. 22(3), pages 475-498, October.
    11. Ahmed Nafidi & Ghizlane Moutabir & Ramón Gutiérrez-Sánchez & Eva Ramos-Ábalos, 2020. "Stochastic Square of the Brennan-Schwartz Diffusion Process: Statistical Computation and Application," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 455-476, June.
    12. Haruhiko Inatsugu & Nakahiro Yoshida, 2021. "Global jump filters and quasi-likelihood analysis for volatility," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 73(3), pages 555-598, June.
    13. Alessandro DE GREGORIO & Stefano Maria IACUS, 2011. "On a family of test statistics for discretely observed diffusion processes," Departmental Working Papers 2011-37, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    14. Alessandro DE GREGORIO & Stefano Maria IACUS, 2009. "Pseudo phi-divergence test statistics and multidimensional Ito processes," Departmental Working Papers 2009-48, Department of Economics, Management and Quantitative Methods at Università degli Studi di Milano.
    15. A. S. Hurn & J. I. Jeisman & K. A. Lindsay, 0. "Seeing the Wood for the Trees: A Critical Evaluation of Methods to Estimate the Parameters of Stochastic Differential Equations," Journal of Financial Econometrics, Oxford University Press, vol. 5(3), pages 390-455.
    16. Gatzert, Nadine & Vogl, Nikolai, 2016. "Evaluating investments in renewable energy under policy risks," Energy Policy, Elsevier, vol. 95(C), pages 238-252.
    17. Nakahiro Yoshida, 2022. "Quasi-likelihood analysis and its applications," Statistical Inference for Stochastic Processes, Springer, vol. 25(1), pages 43-60, April.
    18. Masahiro Kurisaki, 2023. "Parameter estimation for ergodic linear SDEs from partial and discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 26(2), pages 279-330, July.
    19. Ogihara, Teppei & Yoshida, Nakahiro, 2014. "Quasi-likelihood analysis for nonsynchronously observed diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2954-3008.
    20. Lee, Sangyeol, 2006. "The Bickel-Rosenblatt test for diffusion processes," Statistics & Probability Letters, Elsevier, vol. 76(14), pages 1494-1502, August.

    More about this item

    Keywords

    stochastic diffusion process; parameter estimation; Itô’s formula; Weibul density; Maximum LikeLihoode;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-01081470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.