IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00684005.html
   My bibliography  Save this paper

Maximum Maximum of Martingales given Marginals

Author

Listed:
  • Pierre Henry-Labordere

    (Société Générale)

  • Jan Obloj

    (MI - Mathematical Institute [Oxford] - University of Oxford)

  • Peter Spoida

    (MI - Mathematical Institute [Oxford] - University of Oxford)

  • Nizar Touzi

    (CMAP - Centre de Mathématiques Appliquées de l'Ecole polytechnique - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - CNRS - Centre National de la Recherche Scientifique)

Abstract

We consider the problem of superhedging under volatility uncertainty for an investor allowed to dynamically trade the underlying asset and statically trade European call options for all possible strikes and finitely-many maturities. We present a general duality result which converts this problem into a min-max calculus of variations problem where the Lagrange multipliers correspond to the static part of the hedge. Following Galichon, Henry-Labordére and Touzi \cite{ght}, we apply stochastic control methods to solve it explicitly for Lookback options with a non-decreasing payoff function. The first step of our solution recovers the extended optimal properties of the Azéma-Yor solution of the Skorokhod embedding problem obtained by Hobson and Klimmek \cite{hobson-klimmek} (under slightly different conditions). The two marginal case corresponds to the work of Brown, Hobson and Rogers \cite{brownhobsonrogers}. The robust superhedging cost is complemented by (simple) dynamic trading and leads to a class of semi-static trading strategies. The superhedging property then reduces to a functional inequality which we verify independently. The optimality follows from existence of a model which achieves equality which is obtained in Ob\lój and Spoida \cite{OblSp}.

Suggested Citation

  • Pierre Henry-Labordere & Jan Obloj & Peter Spoida & Nizar Touzi, 2013. "Maximum Maximum of Martingales given Marginals," Working Papers hal-00684005, HAL.
  • Handle: RePEc:hal:wpaper:hal-00684005
    Note: View the original document on HAL open archive server: https://hal.science/hal-00684005v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00684005v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David G. Hobson, 1998. "Robust hedging of the lookback option," Finance and Stochastics, Springer, vol. 2(4), pages 329-347.
    2. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    3. Alexander Cox & Jan Obłój, 2011. "Robust pricing and hedging of double no-touch options," Finance and Stochastics, Springer, vol. 15(3), pages 573-605, September.
    4. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dolinsky, Yan & Soner, H. Mete, 2015. "Martingale optimal transport in the Skorokhod space," Stochastic Processes and their Applications, Elsevier, vol. 125(10), pages 3893-3931.
    2. Marcel Nutz, 2013. "Superreplication under Model Uncertainty in Discrete Time," Papers 1301.3227, arXiv.org, revised Feb 2014.
    3. Pierre Henry-Labordère, 2013. "Automated Option Pricing: Numerical Methods," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(08), pages 1-27.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sergey Badikov & Mark H. A. Davis & Antoine Jacquier, 2018. "Perturbation analysis of sub/super hedging problems," Papers 1806.03543, arXiv.org, revised May 2021.
    2. David Hobson & Anthony Neuberger, 2016. "On the value of being American," Papers 1604.02269, arXiv.org.
    3. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    4. David Hobson & Dominykas Norgilas, 2019. "Robust bounds for the American put," Finance and Stochastics, Springer, vol. 23(2), pages 359-395, April.
    5. Florian Stebegg, 2014. "Model-Independent Pricing of Asian Options via Optimal Martingale Transport," Papers 1412.1429, arXiv.org.
    6. Erhan Bayraktar & Shuoqing Deng & Dominykas Norgilas, 2023. "Supermartingale Brenier’s Theorem with Full-Marginal Constraint," World Scientific Book Chapters, in: Robert A Jarrow & Dilip B Madan (ed.), Peter Carr Gedenkschrift Research Advances in Mathematical Finance, chapter 17, pages 569-636, World Scientific Publishing Co. Pte. Ltd..
    7. Pierre Henry-Labord`ere & Jan Ob{l}'oj & Peter Spoida & Nizar Touzi, 2012. "The maximum maximum of a martingale with given $n$ marginals," Papers 1203.6877, arXiv.org, revised Jan 2016.
    8. Alexander M. G. Cox & Jiajie Wang, 2013. "Optimal robust bounds for variance options," Papers 1308.4363, arXiv.org.
    9. Sergey Nadtochiy & Jan Obloj, 2016. "Robust Trading of Implied Skew," Papers 1611.05518, arXiv.org.
    10. David Hobson & Anthony Neuberger, 2017. "Model uncertainty and the pricing of American options," Finance and Stochastics, Springer, vol. 21(1), pages 285-329, January.
    11. Gaoyue Guo & Xiaolu Tan & Nizar Touzi, 2015. "Optimal Skorokhod embedding under finitely-many marginal constraints," Papers 1506.04063, arXiv.org, revised Aug 2016.
    12. Julien Claisse & Gaoyue Guo & Pierre Henry-Labordère, 2018. "Some Results on Skorokhod Embedding and Robust Hedging with Local Time," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 569-597, November.
    13. Pierre Henry-Labordère & Nizar Touzi, 2016. "An explicit martingale version of the one-dimensional Brenier theorem," Finance and Stochastics, Springer, vol. 20(3), pages 635-668, July.
    14. Henry-Labordère, Pierre & Tan, Xiaolu & Touzi, Nizar, 2016. "An explicit martingale version of the one-dimensional Brenier’s Theorem with full marginals constraint," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2800-2834.
    15. Zhaoxu Hou & Jan Obłój, 2018. "Robust pricing–hedging dualities in continuous time," Finance and Stochastics, Springer, vol. 22(3), pages 511-567, July.
    16. Alexander M. G. Cox & Zhaoxu Hou & Jan Obloj, 2014. "Robust pricing and hedging under trading restrictions and the emergence of local martingale models," Papers 1406.0551, arXiv.org, revised Jun 2015.
    17. Alexander M. G. Cox & Christoph Hoeggerl, 2013. "Model-independent no-arbitrage conditions on American put options," Papers 1301.5467, arXiv.org.
    18. Alessandro Doldi & Marco Frittelli, 2023. "Entropy martingale optimal transport and nonlinear pricing–hedging duality," Finance and Stochastics, Springer, vol. 27(2), pages 255-304, April.
    19. Matteo Burzoni & Marco Frittelli & Marco Maggis, 2015. "Model-free Superhedging Duality," Papers 1506.06608, arXiv.org, revised May 2016.
    20. Julien Claisse & Gaoyue Guo & Pierre Henry-Labordere, 2015. "Some Results on Skorokhod Embedding and Robust Hedging with Local Time," Papers 1511.07230, arXiv.org, revised Oct 2017.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00684005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.