IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/hal-00526251.html
   My bibliography  Save this paper

A Radon-Nikodym approach to measure information

Author

Listed:
  • Yann Rébillé

    (LEMNA - Laboratoire d'économie et de management de Nantes Atlantique - IEMN-IAE Nantes - Institut d'Économie et de Management de Nantes - Institut d'Administration des Entreprises - Nantes - UN - Université de Nantes)

Abstract

We consider a decision maker facing uncertainty which behaves as a subjective expected utility maximizer. The value of information is traditionnaly captured as a greater expected utility the decision maker can achieve by selecting a best strategy as information arrives. We deal with the limit process of being better informed and introduce an information density function depending soley on the states that gives an exact least upper bound to being more informed. This information density function is given by a Radon-Nikodym's type theorem for set functions and is explicitely computed for the countable case.

Suggested Citation

  • Yann Rébillé, 2010. "A Radon-Nikodym approach to measure information," Working Papers hal-00526251, HAL.
  • Handle: RePEc:hal:wpaper:hal-00526251
    Note: View the original document on HAL open archive server: https://hal.science/hal-00526251
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00526251/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lehrer, Ehud & Rosenberg, Dinah, 2006. "What restrictions do Bayesian games impose on the value of information?," Journal of Mathematical Economics, Elsevier, vol. 42(3), pages 343-357, June.
    2. Gilboa, Itzhak & Lehrer, Ehud, 1991. "The value of information - An axiomatic approach," Journal of Mathematical Economics, Elsevier, vol. 20(5), pages 443-459.
    3. Aumann, Robert J., 1974. "Subjectivity and correlation in randomized strategies," Journal of Mathematical Economics, Elsevier, vol. 1(1), pages 67-96, March.
    4. Kennan, John, 1981. "The Existence of Expected Utility Maximizing Decisions When Utility Is Unbounded," Econometrica, Econometric Society, vol. 49(1), pages 215-218, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kops, Christopher & Pasichnichenko, Illia, 2023. "Testing negative value of information and ambiguity aversion," Journal of Economic Theory, Elsevier, vol. 213(C).
    2. Áron Tóbiás, 2023. "Cognitive limits and preferences for information," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 221-253, June.
    3. Bernard de Meyer & Ehud Lehrer & Dinah Rosenberg, 2009. "Evaluating information in zero-sum games with incomplete information on both sides," Post-Print halshs-00390625, HAL.
    4. Bernard De Meyer & Ehud Lehrer & Dinah Rosenberg, 2010. "Evaluating Information in Zero-Sum Games with Incomplete Information on Both Sides," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 851-863, November.
    5. Lefort, Jean-Philippe, 2009. "Guessing the beliefs," Journal of Mathematical Economics, Elsevier, vol. 45(12), pages 846-853, December.
    6. Jean-Philippe Lefort, 2006. "Comparison of experts in the non-additive case," Post-Print halshs-00130451, HAL.
    7. Lehrer, Ehud & Rosenberg, Dinah, 2006. "What restrictions do Bayesian games impose on the value of information?," Journal of Mathematical Economics, Elsevier, vol. 42(3), pages 343-357, June.
    8. Vitaly Pruzhansky, 2003. "Maximin Play in Two-Person Bimatrix Games," Tinbergen Institute Discussion Papers 03-101/1, Tinbergen Institute.
    9. Ehud Kalai & Eilon Solan, 2000. "Randomization and Simplification," Discussion Papers 1283, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    10. Sacha Bourgeois-Gironde, 2017. "How regret moves individual and collective choices towards rationality," Chapters, in: Morris Altman (ed.), Handbook of Behavioural Economics and Smart Decision-Making, chapter 11, pages 188-204, Edward Elgar Publishing.
    11. Lau, Sau-Him Paul, 2001. "Aggregate Pattern of Time-dependent Adjustment Rules, II: Strategic Complementarity and Endogenous Nonsynchronization," Journal of Economic Theory, Elsevier, vol. 98(2), pages 199-231, June.
    12. Koessler, Frederic & Laclau, Marie & Renault, Jérôme & Tomala, Tristan, 2022. "Long information design," Theoretical Economics, Econometric Society, vol. 17(2), May.
    13. Dirk Bergemann & Stephen Morris, 2019. "Information Design: A Unified Perspective," Journal of Economic Literature, American Economic Association, vol. 57(1), pages 44-95, March.
    14. Jorge M. Streb & Gustavo Torrens, 2011. "Meaningful talk," CEMA Working Papers: Serie Documentos de Trabajo. 443, Universidad del CEMA, revised May 2017.
    15. Gilboa Itzhak & Schmeidler David, 1994. "Infinite Histories and Steady Orbits in Repeated Games," Games and Economic Behavior, Elsevier, vol. 6(3), pages 370-399, May.
    16. Van Damme, Eric, 2002. "Strategic equilibrium," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 41, pages 1521-1596, Elsevier.
    17. Vida, Péter & Āzacis, Helmuts, 2013. "A detail-free mediator," Games and Economic Behavior, Elsevier, vol. 81(C), pages 101-115.
    18. Oriol Carbonell-Nicolau, 2021. "Equilibria in infinite games of incomplete information," International Journal of Game Theory, Springer;Game Theory Society, vol. 50(2), pages 311-360, June.
    19. Konstantinos Georgalos & Indrajit Ray & Sonali SenGupta, 2020. "Nash versus coarse correlation," Experimental Economics, Springer;Economic Science Association, vol. 23(4), pages 1178-1204, December.
    20. Antonio Cabrales & Michalis Drouvelis & Zeynep Gurguy & Indrajit Ray, 2017. "Transparency is Overrated: Communicating in a Coordination Game with Private Information," CESifo Working Paper Series 6781, CESifo.

    More about this item

    Keywords

    Decision making under uncertainty; value of information; expected utility; capacity; Radon-Nikodyn derivative;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:hal-00526251. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.