IDEAS home Printed from https://ideas.repec.org/p/hal/pseptp/halshs-01885446.html
   My bibliography  Save this paper

Accelerating diffusion of climate-friendly technologies: A network perspective

Author

Listed:
  • Solmaria Halleck Vega

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UP1 - Université Paris 1 Panthéon-Sorbonne)

  • Antoine Mandel

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Katrin Millock

    (PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, PJSE - Paris Jourdan Sciences Economiques - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - INRA - Institut National de la Recherche Agronomique - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

Abstract

We introduce a methodology to estimate the determinants of the formation of technology diffusion networks from the patterns of technology adoption. We apply this methodology to wind energy, which is one of the key technologies in climate change mitigation. Our results emphasize that, in particular, long-term relationships as measured by economic integration are key determinants of technological diffusion. Specific support measures are less relevant, at least to explain the extensive margin of diffusion. Our results also highlight that the scope of technological diffusion is much broader than what is suggested by the consideration of CDM projects alone, which are particularly focused on China and India. Finally, the network of technological diffusion inferred from our approach highlights the central role of European countries in the diffusion process and the absence of large hubs among developing countries.

Suggested Citation

  • Solmaria Halleck Vega & Antoine Mandel & Katrin Millock, 2018. "Accelerating diffusion of climate-friendly technologies: A network perspective," PSE-Ecole d'économie de Paris (Postprint) halshs-01885446, HAL.
  • Handle: RePEc:hal:pseptp:halshs-01885446
    DOI: 10.1016/j.ecolecon.2018.05.007
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    2. Bramoulle, Yann & Galeotti, Andrea & Rogers, Brian (ed.), 2016. "The Oxford Handbook of the Economics of Networks," OUP Catalogue, Oxford University Press, number 9780199948277.
    3. Dechezleprêtre, Antoine & Glachant, Matthieu & Ménière, Yann, 2008. "The Clean Development Mechanism and the international diffusion of technologies: An empirical study," Energy Policy, Elsevier, vol. 36(4), pages 1273-1283, April.
    4. Thomas Chaney, 2014. "The Network Structure of International Trade," American Economic Review, American Economic Association, vol. 104(11), pages 3600-3634, November.
    5. Francesco Caselli & Wilbur John Coleman, 2001. "Cross-Country Technology Diffusion: The Case of Computers," American Economic Review, American Economic Association, vol. 91(2), pages 328-335, May.
    6. Cesar A. Hidalgo & Ricardo Hausmann, 2009. "The Building Blocks of Economic Complexity," Papers 0909.3890, arXiv.org.
    7. Jon Hovi & Detlef F Sprinz & Håkon Sælen & Arild Underdal, 2016. "Climate change mitigation: a role for climate clubs?," Palgrave Communications, Palgrave Macmillan, vol. 2(1), pages 1-9, December.
    8. Midgley, David F. & Morrison, Pamela D. & Roberts, John H., 1992. "The effect of network structure in industrial diffusion processes," Research Policy, Elsevier, vol. 21(6), pages 533-552, December.
    9. Sebastiano A. Delre & Wander Jager & Marco A. Janssen, 2007. "Diffusion dynamics in small-world networks with heterogeneous consumers," Computational and Mathematical Organization Theory, Springer, vol. 13(2), pages 185-202, June.
    10. Lovely, Mary & Popp, David, 2011. "Trade, technology, and the environment: Does access to technology promote environmental regulation?," Journal of Environmental Economics and Management, Elsevier, vol. 61(1), pages 16-35, January.
    11. Juliana Subtil Lacerda & Jeroen C. J. M. Van den Bergh, 2014. "International Diffusion of Renewable Energy Innovations: Lessons from the Lead Markets for Wind Power in China, Germany and USA," Energies, MDPI, vol. 7(12), pages 1-28, December.
    12. Diego Comin & Bart Hobijn, 2009. "Lobbies and Technology Diffusion," The Review of Economics and Statistics, MIT Press, vol. 91(2), pages 229-244, May.
    13. Glachant, Matthieu & Dussaux, Damien & Meniere, Yann & Dechezlepretre, Antoine, 2013. "Greening global value chains : innovation and the international diffusion of technologies and knowledge," Policy Research Working Paper Series 6467, The World Bank.
    14. Yann Bramoullé & Andrea Galeotti & Brian Rogers, 2016. "The Oxford Handbook of the Economics of Networks," Post-Print hal-01447842, HAL.
    15. Antoine Dechezleprêtre & Matthieu Glachant, 2014. "Does Foreign Environmental Policy Influence Domestic Innovation? Evidence from the Wind Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 58(3), pages 391-413, July.
    16. Archibugi, Daniele & Coco, Alberto, 2004. "A New Indicator of Technological Capabilities for Developed and Developing Countries (ArCo)," World Development, Elsevier, vol. 32(4), pages 629-654, April.
    17. Baier, Scott L. & Bergstrand, Jeffrey H. & Feng, Michael, 2014. "Economic integration agreements and the margins of international trade," Journal of International Economics, Elsevier, vol. 93(2), pages 339-350.
    18. Cowan, Robin & Jonard, Nicolas, 2004. "Network structure and the diffusion of knowledge," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1557-1575, June.
    19. Stefania Vitali & James B Glattfelder & Stefano Battiston, 2011. "The Network of Global Corporate Control," PLOS ONE, Public Library of Science, vol. 6(10), pages 1-6, October.
    20. Polzin, Friedemann & Migendt, Michael & Täube, Florian A. & von Flotow, Paschen, 2015. "Public policy influence on renewable energy investments—A panel data study across OECD countries," Energy Policy, Elsevier, vol. 80(C), pages 98-111.
    21. Mayer, Thierry & Zignago, Soledad, 2006. "Notes on CEPII’s distances measures," MPRA Paper 26469, University Library of Munich, Germany.
    22. Brunnschweiler, Christa N., 2010. "Finance for renewable energy: an empirical analysis of developing and transition economies," Environment and Development Economics, Cambridge University Press, vol. 15(3), pages 241-274, June.
    23. C. A. Hidalgo & B. Klinger & A. -L. Barabasi & R. Hausmann, 2007. "The Product Space Conditions the Development of Nations," Papers 0708.2090, arXiv.org.
    24. Yann Bramoullé & Andrea Galeotti & Brian Rogers, 2016. "The Oxford Handbook of the Economics of Networks," Post-Print hal-03572533, HAL.
    25. Halleck Vega, Solmaria & Mandel, Antoine, 2018. "Technology Diffusion and Climate Policy: A Network Approach and its Application to Wind Energy," Ecological Economics, Elsevier, vol. 145(C), pages 461-471.
    26. Allan, Corey & Jaffe, Adam B. & Sin, Isabelle, 2014. "Diffusion of Green Technology: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 7(1), pages 1-33, April.
    27. Áureo de Paula, 2015. "Econometrics of network models," CeMMAP working papers 52/15, Institute for Fiscal Studies.
    28. Diego Comin & Bart Hobijn, 2010. "An Exploration of Technology Diffusion," American Economic Review, American Economic Association, vol. 100(5), pages 2031-2059, December.
    29. Michael Grubb, 2015. "From Lima to Paris, Part 1: The Lima Hangover," Climate Policy, Taylor & Francis Journals, vol. 15(3), pages 299-301, May.
    30. Pfeiffer, Birte & Mulder, Peter, 2013. "Explaining the diffusion of renewable energy technology in developing countries," Energy Economics, Elsevier, vol. 40(C), pages 285-296.
    31. Geroski, P. A., 2000. "Models of technology diffusion," Research Policy, Elsevier, vol. 29(4-5), pages 603-625, April.
    32. Robert O. Keohane & David G. Victor, 2016. "Cooperation and discord in global climate policy," Nature Climate Change, Nature, vol. 6(6), pages 570-575, June.
    33. Nives Dolšak & Emily Crandall, 2013. "Do we know each other? Bilateral ties and the location of clean development mechanism projects," Climatic Change, Springer, vol. 118(3), pages 521-536, June.
    34. Diego A. Comin & Martí Mestieri, 2010. "An Intensive Exploration of Technology Diffusion," NBER Working Papers 16379, National Bureau of Economic Research, Inc.
    35. Michael Grubb & Heleen de Coninck & Ambuj D. Sagar, 2015. "From Lima to Paris, Part 2: Injecting Ambition," Climate Policy, Taylor & Francis Journals, vol. 15(4), pages 413-416, July.
    36. Heleen de Coninck & Ambuj Sagar, 2015. "Making sense of policy for climate technology development and transfer," Climate Policy, Taylor & Francis Journals, vol. 15(1), pages 1-11, January.
    37. Popp, David & Hascic, Ivan & Medhi, Neelakshi, 2011. "Technology and the diffusion of renewable energy," Energy Economics, Elsevier, vol. 33(4), pages 648-662, July.
    38. Ariel Dinar & Shaikh Mahfuzur Rahman & Donald F. Larson & Philippe Ambrosi, 2011. "Local Actions, Global Impacts: International Cooperation and the CDM," Global Environmental Politics, MIT Press, vol. 11(4), pages 108-133, November.
    39. repec:pal:palcom:v:2016:y:2016:i:palcomms201620:p:16020- is not listed on IDEAS
    40. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    41. repec:hal:spmain:info:hdl:2441/7an8r1ubqs93caeqs80puld0tp is not listed on IDEAS
    42. William Nordhaus, 2015. "Climate Clubs: Overcoming Free-Riding in International Climate Policy," American Economic Review, American Economic Association, vol. 105(4), pages 1339-1370, April.
    43. Matthew O. Jackson & Brian W. Rogers, 2007. "Meeting Strangers and Friends of Friends: How Random Are Social Networks?," American Economic Review, American Economic Association, vol. 97(3), pages 890-915, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marola, Elena & Schöpfner, Judith & Gallemore, Caleb & Jespersen, Kristjan, 2020. "The bandwidth problem in telecoupled systems governance: Certifying sustainable winemaking in Australia and Chile," Ecological Economics, Elsevier, vol. 171(C).
    2. Shi, Yingying & Wei, Zixiang & Shahbaz, Muhammad & Zeng, Yongchao, 2021. "Exploring the dynamics of low-carbon technology diffusion among enterprises: An evolutionary game model on a two-level heterogeneous social network," Energy Economics, Elsevier, vol. 101(C).
    3. Mao, Hui & Chai, Yujia & Shao, Xiaoxuan & Chang, Xue, 2024. "Digital extension and farmers' adoption of climate adaptation technology: An empirical analysis of China," Land Use Policy, Elsevier, vol. 143(C).
    4. Antoine Mandel & Solmaria Halleck Vega & Dan-Xia Wang, 2020. "The contribution of technological diffusion to climate change mitigation: a network-based approach," Climatic Change, Springer, vol. 160(4), pages 609-620, June.
    5. Côme Billard & Anna Creti & Antoine Mandel, 2020. "How Environmental Policies Spread? A Network Approach to Diffusion in the U.S," Working Papers 2020.12, FAERE - French Association of Environmental and Resource Economists.
    6. Garsous, Grégoire & Worack, Stephan, 2022. "Technological expertise as a driver of environmental technology diffusion through trade: Evidence from the wind turbine manufacturing industry," Energy Policy, Elsevier, vol. 162(C).
    7. Côme Billard, 2020. "Technology Contagion in Networks," Working Papers 2020.01, FAERE - French Association of Environmental and Resource Economists.
    8. Fadly, Dalia & Fontes, Francisco, 2019. "Geographical proximity and renewable energy diffusion: An empirical approach," Energy Policy, Elsevier, vol. 129(C), pages 422-435.
    9. Xiujie Tan & Si Cheng & Yishuang Liu, 2024. "Green digital finance and technology diffusion," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-11, December.
    10. Monasterolo, Irene & Roventini, Andrea & Foxon, Tim J., 2019. "Uncertainty of climate policies and implications for economics and finance: An evolutionary economics approach," Ecological Economics, Elsevier, vol. 163(C), pages 177-182.
    11. Wang, Junling & Cheng, Siyu & Guo, Xinyu & Xu, Xin & Wang, Zehao, 2024. "An evolutionary analysis of the diffusion of low-carbon technology innovation in supply networks," Research in International Business and Finance, Elsevier, vol. 70(PB).
    12. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2024. "Global climate change mitigation technology diffusion: A network perspective," Energy Economics, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Mandel & Solmaria Halleck Vega & Dan-Xia Wang, 2020. "The contribution of technological diffusion to climate change mitigation: a network-based approach," Climatic Change, Springer, vol. 160(4), pages 609-620, June.
    2. Fadly, Dalia & Fontes, Francisco, 2019. "Geographical proximity and renewable energy diffusion: An empirical approach," Energy Policy, Elsevier, vol. 129(C), pages 422-435.
    3. Solmaria Halleck Vega & Antoine Mandel, 2017. "A network-based approach to technology transfers in the context of climate policy," Post-Print halshs-01483963, HAL.
    4. Brancaccio, Emiliano & Giammetti, Raffaele & Lopreite, Milena & Puliga, Michelangelo, 2019. "Monetary policy, crisis and capital centralization in corporate ownership and control networks: A B-Var analysis," Structural Change and Economic Dynamics, Elsevier, vol. 51(C), pages 55-66.
    5. Zhang, Jianhua & Ballas, Dimitris & Liu, Xiaolong, 2024. "Global climate change mitigation technology diffusion: A network perspective," Energy Economics, Elsevier, vol. 133(C).
    6. Galang, Roberto Martin N., 2014. "Divergent diffusion: Understanding the interaction between institutions, firms, networks and knowledge in the international adoption of technology," Journal of World Business, Elsevier, vol. 49(4), pages 512-521.
    7. Comin, Diego & Mestieri, Martí, 2014. "Technology Diffusion: Measurement, Causes, and Consequences," Handbook of Economic Growth, in: Philippe Aghion & Steven Durlauf (ed.), Handbook of Economic Growth, edition 1, volume 2, chapter 2, pages 565-622, Elsevier.
    8. Anton Badev, 2021. "Nash Equilibria on (Un)Stable Networks," Econometrica, Econometric Society, vol. 89(3), pages 1179-1206, May.
    9. Garsous, Grégoire & Worack, Stephan, 2022. "Technological expertise as a driver of environmental technology diffusion through trade: Evidence from the wind turbine manufacturing industry," Energy Policy, Elsevier, vol. 162(C).
    10. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    11. Bogang Jun & Aamena Alshamsi & Jian Gao & Cesar A Hidalgo, 2017. "Relatedness, Knowledge Diffusion, and the Evolution of Bilateral Trade," Papers 1709.05392, arXiv.org.
    12. Beugnot, Julie & Fortin, Bernard & Lacroix, Guy & Villeval, Marie Claire, 2019. "Gender and peer effects on performance in social networks," European Economic Review, Elsevier, vol. 113(C), pages 207-224.
    13. Thomas Chaney, 2014. "The Network Structure of International Trade," American Economic Review, American Economic Association, vol. 104(11), pages 3600-3634, November.
    14. Best, Rohan & Burke, Paul J., 2018. "Adoption of solar and wind energy: The roles of carbon pricing and aggregate policy support," Energy Policy, Elsevier, vol. 118(C), pages 404-417.
    15. Claire Brunel & Thomas Zylkin, 2022. "Do cross‐border patents promote trade?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(1), pages 379-418, February.
    16. Frank Emmert-Streib & Aliyu Musa & Kestutis Baltakys & Juho Kanniainen & Shailesh Tripathi & Olli Yli-Harja & Herbert Jodlbauer & Matthias Dehmer, 2017. "Computational Analysis of the structural properties of Economic and Financial Networks," Papers 1710.04455, arXiv.org.
    17. repec:spo:wpmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    18. repec:spo:wpmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    19. Popp, David, 2012. "The role of technological change in green growth," Policy Research Working Paper Series 6239, The World Bank.
    20. Matthew O. Jackson & Brian W. Rogers & Yves Zenou, 2017. "The Economic Consequences of Social-Network Structure," Journal of Economic Literature, American Economic Association, vol. 55(1), pages 49-95, March.
    21. Gosens, Jorrit & Hedenus, Fredrik & Sandén, Björn A., 2017. "Faster market growth of wind and PV in late adopters due to global experience build-up," Energy, Elsevier, vol. 131(C), pages 267-278.
    22. Polzin, Friedemann & Egli, Florian & Steffen, Bjarne & Schmidt, Tobias S., 2019. "How do policies mobilize private finance for renewable energy?—A systematic review with an investor perspective," Applied Energy, Elsevier, vol. 236(C), pages 1249-1268.

    More about this item

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:pseptp:halshs-01885446. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Caroline Bauer (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.