IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01859163.html
   My bibliography  Save this paper

Equilibrium of a production economy with non-compact attainable allocations set

Author

Listed:
  • Senda Ounaies

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Jean-Marc Bonnisseau

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Souhail Chebbi

    (LEGI - Laboratoire d'Économie et de Gestion Industrielle [Tunis] - Ecole Polytechnique de Tunisie - UCAR - Université de Carthage (Tunisie))

Abstract

In this paper, we consider a production economy with an unbounded attainable set where the consumers may have non-complete non-transitive preferences. To get the existence of an equilibrium, we provide an asymptotic property on preferences for the attainable consumptions and we use a combination of the nonlinear optimization and fixed point theorems on truncated economies together with an asymptotic argument. We show that this condition holds true if the set of attainable allocations is compact or, when the preferences are representable by utility functions, if the set of attainable individually rational utility levels is compact. This assumption generalizes the CPP condition of [N. Allouch, An equilibrium existence result with short selling, J. Math. Econom. 37 2002, 2, 81–94] and covers the example of [F. H. Page, Jr., M. H. Wooders and P. K. Monteiro, Inconsequential arbitrage, J. Math. Econom. 34 2000, 4, 439–469] when the attainable utility levels set is not compact. So we extend the previous existence results with non-compact attainable sets in two ways by adding a production sector and considering general preferences.

Suggested Citation

  • Senda Ounaies & Jean-Marc Bonnisseau & Souhail Chebbi, 2019. "Equilibrium of a production economy with non-compact attainable allocations set," Post-Print halshs-01859163, HAL.
  • Handle: RePEc:hal:journl:halshs-01859163
    DOI: 10.1515/anona-2017-0234
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01859163
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-01859163/document
    Download Restriction: no

    File URL: https://libkey.io/10.1515/anona-2017-0234?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Gale, D. & Mas-Colell, A., 1975. "An equilibrium existence theorem for a general model without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 2(1), pages 9-15, March.
    2. Nizar Allouch & Monique Florenzano, 2004. "Edgeworth and Walras equilibria of an arbitrage-free exchange economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(2), pages 353-370, January.
    3. Donald J. Brown & Jan Werner, 1995. "Arbitrage and Existence of Equilibrium in Infinite Asset Markets," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(1), pages 101-114.
    4. PageJr., Frank H. & Wooders, Myrna H. & Monteiro, Paulo K., 2000. "Inconsequential arbitrage," Journal of Mathematical Economics, Elsevier, vol. 34(4), pages 439-469, December.
    5. Allouch, Nizar, 2002. "An equilibrium existence result with short selling," Journal of Mathematical Economics, Elsevier, vol. 37(2), pages 81-94, April.
    6. Shafer, Wayne & Sonnenschein, Hugo, 1975. "Equilibrium in abstract economies without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 2(3), pages 345-348, December.
    7. Dana, Rose-Anne & Le Van, Cuong & Magnien, Francois, 1999. "On the Different Notions of Arbitrage and Existence of Equilibrium," Journal of Economic Theory, Elsevier, vol. 87(1), pages 169-193, July.
    8. Gale, D. & Mas-Colell, A., 1979. "Corrections to an equilibrium existence theorem for a general model without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 6(3), pages 297-298, December.
    9. Shafer, Wayne J., 1976. "Equilibrium in economies without ordered preferences or free disposal," Journal of Mathematical Economics, Elsevier, vol. 3(2), pages 135-137, July.
    10. Cheng, Harrison H. C., 1991. "Asset market equilibrium in infinite dimensional complete markets," Journal of Mathematical Economics, Elsevier, vol. 20(1), pages 137-152.
    11. Werner, Jan, 1987. "Arbitrage and the Existence of Competitive Equilibrium," Econometrica, Econometric Society, vol. 55(6), pages 1403-1418, November.
    12. Hart, Oliver D., 1974. "On the existence of equilibrium in a securities model," Journal of Economic Theory, Elsevier, vol. 9(3), pages 293-311, November.
    13. Greenberg, Joseph, 1977. "Quasi-equilibrium in abstract economies without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 4(2), pages 163-165, August.
    14. Shafer, Wayne J, 1974. "The Nontransitive Consumer," Econometrica, Econometric Society, vol. 42(5), pages 913-919, September.
    15. Mas-Colell, Andrew, 1974. "An equilibrium existence theorem without complete or transitive preferences," Journal of Mathematical Economics, Elsevier, vol. 1(3), pages 237-246, December.
    16. repec:dau:papers:123456789/6228 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bełdziński, Michał & Galewski, Marek, 2020. "Nash–type equilibria for systems of non-potential equations," Applied Mathematics and Computation, Elsevier, vol. 385(C).
    2. Tony Bryant & Doug McLeod, 2020. "The Guidance of an Enterprise Economy," The Economic Record, The Economic Society of Australia, vol. 96(313), pages 209-210, June.
    3. Dumitru Motreanu & Van Thien Nguyen & Shengda Zeng, 2020. "Existence of Solutions for Implicit Obstacle Problems of Fractional Laplacian Type Involving Set-Valued Operators," Journal of Optimization Theory and Applications, Springer, vol. 187(2), pages 391-407, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Senda Ounaies & Jean-Marc Bonnisseau & Souhail Chebbi, 2016. "Equilibrium of a production economy with unbounded attainable allocations set," Documents de travail du Centre d'Economie de la Sorbonne 16056, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. Won, Dong Chul & Yannelis, Nicholas C., 2008. "Equilibrium theory with unbounded consumption sets and non-ordered preferences: Part I. Non-satiation," Journal of Mathematical Economics, Elsevier, vol. 44(11), pages 1266-1283, December.
    3. W D A Bryant, 2009. "General Equilibrium:Theory and Evidence," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 6875, August.
    4. Paul Oslington, 2012. "General Equilibrium: Theory and Evidence," The Economic Record, The Economic Society of Australia, vol. 88(282), pages 446-448, September.
    5. Won, Dong Chul & Yannelis, Nicholas C., 2011. "Equilibrium theory with satiable and non-ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 47(2), pages 245-250, March.
    6. Nizar Allouch & Monique Florenzano, 2004. "Edgeworth and Walras equilibria of an arbitrage-free exchange economy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 23(2), pages 353-370, January.
    7. Charalambos Aliprantis & Kim Border & Owen Burkinshaw, 1996. "Market economies with many commodities," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 19(1), pages 113-185, March.
    8. Thai Ha Huy & Cuong Le Van, 2014. "Arbitrage and asset market equilibrium in finite dimensional economies with short," Working Papers 2014-122, Department of Research, Ipag Business School.
    9. Cuong Van & Frank Page & Myrna Wooders, 2007. "Risky arbitrage, asset prices, and externalities," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(3), pages 475-491, December.
    10. Allouch, Nizar & Le Van, Cuong & Page, Frank Jr., 2002. "The geometry of arbitrage and the existence of competitive equilibrium," Journal of Mathematical Economics, Elsevier, vol. 38(4), pages 373-391, December.
    11. PageJr., Frank H. & Wooders, Myrna H. & Monteiro, Paulo K., 2000. "Inconsequential arbitrage," Journal of Mathematical Economics, Elsevier, vol. 34(4), pages 439-469, December.
    12. Allouch, Nizar & Le Van, Cuong & Page, Frank H., Jr., 2002. "Arbitrage, Equilibrium, and Nonsatiation," Economic Research Papers 269411, University of Warwick - Department of Economics.
    13. M. Ali Khan & Metin Uyanik, 2021. "The Yannelis–Prabhakar theorem on upper semi-continuous selections in paracompact spaces: extensions and applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(3), pages 799-840, April.
    14. Wassim Daher & V. Martins-da-Rocha & Yiannis Vailakis, 2007. "Asset market equilibrium with short-selling and differential information," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 32(3), pages 425-446, September.
    15. Ha-Huy, Thai & Le Van, Cuong & Nguyen, Manh-Hung, 2016. "Arbitrage and asset market equilibrium in infinite dimensional economies with short-selling and risk-averse expected utilities," Mathematical Social Sciences, Elsevier, vol. 79(C), pages 30-39.
    16. Allouch, Nizar & Le Van, Cuong & Page, Frank Jr., 2006. "Arbitrage and equilibrium in unbounded exchange economies with satiation," Journal of Mathematical Economics, Elsevier, vol. 42(6), pages 661-674, September.
    17. Ha-Huy, Thai & Le Van, Cuong, 2017. "Existence of equilibrium on asset markets with a countably infinite number of states," Journal of Mathematical Economics, Elsevier, vol. 73(C), pages 44-53.
    18. Martins-da-Rocha, V. Filipe & Monteiro, Paulo K., 2009. "Unbounded exchange economies with satiation: How far can we go?," Journal of Mathematical Economics, Elsevier, vol. 45(7-8), pages 465-478, July.
    19. Le Van, Cuong & Truong Xuan, Duc Ha, 2001. "Asset market equilibrium in Lp spaces with separable utilities," Journal of Mathematical Economics, Elsevier, vol. 36(3), pages 241-254, December.
    20. Allouch, Nizar, 2002. "An equilibrium existence result with short selling," Journal of Mathematical Economics, Elsevier, vol. 37(2), pages 81-94, April.

    More about this item

    Keywords

    nonlinear optimization; quasi-equilibrium; non-compact attainable allocations; Production economy;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01859163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.