IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01664219.html
   My bibliography  Save this paper

Passive Mobile Phone Dataset to Construct Origin-destination Matrix: Potentials and Limitations

Author

Listed:
  • Patrick Bonnel

    (LET - Laboratoire d'économie des transports - UL2 - Université Lumière - Lyon 2 - ENTPE - École Nationale des Travaux Publics de l'État - CNRS - Centre National de la Recherche Scientifique)

  • Etienne Hombourger

    (Cerema Direction Est - Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement - Direction Est - Cerema - Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement)

  • Ana-Maria Olteanu-Raimond

    (COGIT - Cartographie et Géomatique - LaSTIG - Laboratoire des Sciences et Technologies de l'Information Géographique - ENSG - École nationale des sciences géographiques - IGN - Institut National de l'Information Géographique et Forestière [IGN])

  • Zbigniew Smoreda

    (Orange Labs [Issy les Moulineaux] - France Télécom)

Abstract

Mobile phone operators produce enormous amounts of data. In this paper we present applications performed with a dataset (communication events + handover and Location Area Up-date) collected by the operator Orange from 31 March to 11 April 2009 for the whole Paris Region. Trips are deduced from the spatio-temporal trajectory of devices through a hypothesis of stationarity within a Location Area in order to define activities. Trips are then aggregated in an origin-destination matrix which is compared with traditional data (census data and household travel survey).

Suggested Citation

  • Patrick Bonnel & Etienne Hombourger & Ana-Maria Olteanu-Raimond & Zbigniew Smoreda, 2015. "Passive Mobile Phone Dataset to Construct Origin-destination Matrix: Potentials and Limitations," Post-Print halshs-01664219, HAL.
  • Handle: RePEc:hal:journl:halshs-01664219
    DOI: 10.1016/j.trpro.2015.12.032
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01664219
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-01664219/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.trpro.2015.12.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Patrick Bonnel, 2003. "Postal, Telephone and Face-to-face Surveys : How Comparable Are They?," Post-Print halshs-00091025, HAL.
    2. Santi Phithakkitnukoon & Zbigniew Smoreda & Patrick Olivier, 2012. "Socio-Geography of Human Mobility: A Study Using Longitudinal Mobile Phone Data," PLOS ONE, Public Library of Science, vol. 7(6), pages 1-9, June.
    3. Morency, Catherine & Trépanier, Martin & Agard, Bruno, 2007. "Measuring transit use variability with smart-card data," Transport Policy, Elsevier, vol. 14(3), pages 193-203, May.
    4. Stopher, Peter R. & Greaves, Stephen P., 2007. "Household travel surveys: Where are we going?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 367-381, June.
    5. Arana, P. & Cabezudo, S. & Peñalba, M., 2014. "Influence of weather conditions on transit ridership: A statistical study using data from Smartcards," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marko Šoštarić & Krešimir Vidović & Marijan Jakovljević & Orsat Lale, 2021. "Data-Driven Methodology for Sustainable Urban Mobility Assessment and Improvement," Sustainability, MDPI, vol. 13(13), pages 1-22, June.
    2. Moyano, Amparo & Moya-Gómez, Borja & Gutiérrez, Javier, 2018. "Access and egress times to high-speed rail stations: a spatiotemporal accessibility analysis," Journal of Transport Geography, Elsevier, vol. 73(C), pages 84-93.
    3. Thomas Feilhauer & Florian Braun & Katja Faller & David Hutter & Daniel Mathis & Johannes Neubauer & Jasmin Pogatschneg & Michelle Weber, 2021. "Mobility Choices—An Instrument for Precise Automatized Travel Behavior Detection & Analysis," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    4. Mariem Fekih & Tom Bellemans & Zbigniew Smoreda & Patrick Bonnel & Angelo Furno & Stéphane Galland, 2021. "A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France)," Transportation, Springer, vol. 48(4), pages 1671-1702, August.
    5. Ballis, Haris & Dimitriou, Loukas, 2020. "Revealing personal activities schedules from synthesizing multi-period origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 224-258.
    6. Alattar, Mohammad Anwar & Cottrill, Caitlin & Beecroft, Mark, 2021. "Public participation geographic information system (PPGIS) as a method for active travel data acquisition," Journal of Transport Geography, Elsevier, vol. 96(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariem Fekih & Tom Bellemans & Zbigniew Smoreda & Patrick Bonnel & Angelo Furno & Stéphane Galland, 2021. "A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France)," Transportation, Springer, vol. 48(4), pages 1671-1702, August.
    2. Mir Aftab Hussain Talpur & Madzlan Napiah & Imtiaz Ahmed Chandio & Shabir Hussain Khahro, 2012. "Transportation Planning Survey Methodologies for the Proposed Study of Physical and Socio-economic Development of Deprived Rural Regions: A Review," Modern Applied Science, Canadian Center of Science and Education, vol. 6(7), pages 1-1, July.
    3. Liu, Yan & Wang, Siqin & Xie, Bin, 2019. "Evaluating the effects of public transport fare policy change together with built and non-built environment features on ridership: The case in South East Queensland, Australia," Transport Policy, Elsevier, vol. 76(C), pages 78-89.
    4. Caroline Bayart & Patrick Bonnel, 2015. "How to Combine Survey Media (Web, Telephone, Face-to-Face): Lyon and Rhône-alps Case Study," Post-Print halshs-01663683, HAL.
    5. Miguel Picornell & Tomás Ruiz & Maxime Lenormand & José Ramasco & Thibaut Dubernet & Enrique Frías-Martínez, 2015. "Exploring the potential of phone call data to characterize the relationship between social network and travel behavior," Transportation, Springer, vol. 42(4), pages 647-668, July.
    6. Maxime Lenormand & Miguel Picornell & Oliva G Cantú-Ros & Antònia Tugores & Thomas Louail & Ricardo Herranz & Marc Barthelemy & Enrique Frías-Martínez & José J Ramasco, 2014. "Cross-Checking Different Sources of Mobility Information," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-10, August.
    7. Pieroni, Caio & Giannotti, Mariana & Alves, Bianca B. & Arbex, Renato, 2021. "Big data for big issues: Revealing travel patterns of low-income population based on smart card data mining in a global south unequal city," Journal of Transport Geography, Elsevier, vol. 96(C).
    8. Jariyasunant, Jerald & Carrel, Andre & Ekambaram, Venkatesan & Gaker, DJ & Kote, Thejovardhana & Sengupta, Raja & Walker, Joan L., 2011. "The Quantified Traveler: Using personal travel data to promote sustainable transport behavior," University of California Transportation Center, Working Papers qt9jg0p1rj, University of California Transportation Center.
    9. Lei, Da & Cheng, Long & Wang, Pengfei & Chen, Xuewu & Zhang, Lin, 2024. "Identifying service bottlenecks in public bikesharing flow networks," Journal of Transport Geography, Elsevier, vol. 116(C).
    10. Gingerich, Kevin & Maoh, Hanna & Anderson, William, 2016. "Expansion of a GPS Truck Trip Sample to Remove Bias and Obtain Representative Flows for Ontario," 57th Transportation Research Forum (51st CTRF) Joint Conference, Toronto, Ontario, May 1-4, 2016 319310, Transportation Research Forum.
    11. Ma, Xiaolei & Liu, Congcong & Wen, Huimin & Wang, Yunpeng & Wu, Yao-Jan, 2017. "Understanding commuting patterns using transit smart card data," Journal of Transport Geography, Elsevier, vol. 58(C), pages 135-145.
    12. Aihua Fan & Xumei Chen, 2020. "Exploring the Relationship between Transport Interventions, Mode Choice, and Travel Perception: An Empirical Study in Beijing, China," IJERPH, MDPI, vol. 17(12), pages 1-19, June.
    13. Li, Linchao & Zhu, Jiasong & Zhang, Hailong & Tan, Huachun & Du, Bowen & Ran, Bin, 2020. "Coupled application of generative adversarial networks and conventional neural networks for travel mode detection using GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 282-292.
    14. Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
    15. Chen, Cynthia & Gong, Hongmian & Lawson, Catherine & Bialostozky, Evan, 2010. "Evaluating the feasibility of a passive travel survey collection in a complex urban environment: Lessons learned from the New York City case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(10), pages 830-840, December.
    16. Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
    17. Tao, Sui & Rohde, David & Corcoran, Jonathan, 2014. "Examining the spatial–temporal dynamics of bus passenger travel behaviour using smart card data and the flow-comap," Journal of Transport Geography, Elsevier, vol. 41(C), pages 21-36.
    18. Winters, Meghan & Voss, Christine & Ashe, Maureen C. & Gutteridge, Kaitlyn & McKay, Heather & Sims-Gould, Joanie, 2015. "Where do they go and how do they get there? Older adults' travel behaviour in a highly walkable environment," Social Science & Medicine, Elsevier, vol. 133(C), pages 304-312.
    19. Ma, Xinwei & Tian, Xiaolin & Jin, Zejin & Cui, Hongjun & Ji, Yanjie & Cheng, Long, 2024. "Evaluation and determinants of metro users' regularity: Insights from transit one-card data," Journal of Transport Geography, Elsevier, vol. 118(C).
    20. Ruone Zhang & Xin Ye & Ke Wang & Dongjin Li & Jiayu Zhu, 2019. "Development of Commute Mode Choice Model by Integrating Actively and Passively Collected Travel Data," Sustainability, MDPI, vol. 11(10), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01664219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.