IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-01227908.html
   My bibliography  Save this paper

Building future nuclear power fleets: The available uranium resources constraint

Author

Listed:
  • Sophie Gabriel
  • Anne Baschwitz
  • Gilles Mathonnière
  • Florian Fizaine

    (LEG - Laboratoire d'Economie et de Gestion - UB - Université de Bourgogne - CNRS - Centre National de la Recherche Scientifique)

  • Tommy Eleouet

Abstract

According to almost all forward-looking studies, the world′s energy consumption will increase in the future decades, mostly because of the growing world population and the long-term development of emerging countries. The effort to contain global warming makes it hard to exclude nuclear energy from the global energy mix.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Sophie Gabriel & Anne Baschwitz & Gilles Mathonnière & Florian Fizaine & Tommy Eleouet, 2013. "Building future nuclear power fleets: The available uranium resources constraint," Post-Print halshs-01227908, HAL.
  • Handle: RePEc:hal:journl:halshs-01227908
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Knapp, Vladimir & Pevec, Dubravko & Matijevic, Mario, 2010. "The potential of fission nuclear power in resolving global climate change under the constraints of nuclear fuel resources and once-through fuel cycles," Energy Policy, Elsevier, vol. 38(11), pages 6793-6803, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Haeyeon & G. Eggert, Roderick & W. Carlsen, Brett & W. Dixon, Brent, 2016. "Potential uranium supply from phosphoric acid: A U.S. analysis comparing solvent extraction and Ion exchange recovery," Resources Policy, Elsevier, vol. 49(C), pages 222-231.
    2. López, Luis & Castro, Liliana N. & Scasso, Roberto A. & Grancea, Luminita & Tulsidas, Harikrishnan & Haneklaus, Nils, 2019. "Uranium supply potential from phosphate rocks for Argentina's nuclear power fleet," Resources Policy, Elsevier, vol. 62(C), pages 397-404.
    3. Monnet, Antoine & Percebois, Jacques & Gabriel, Sophie, 2015. "Assessing the potential production of uranium from coal-ash milling in the long term," Resources Policy, Elsevier, vol. 45(C), pages 173-182.
    4. Xuesong Yan & Lei Yang & Xunchao Zhang & Wenlong Zhan, 2017. "Concept of an Accelerator-Driven Advanced Nuclear Energy System," Energies, MDPI, vol. 10(7), pages 1-13, July.
    5. Monnet, Antoine & Gabriel, Sophie & Percebois, Jacques, 2017. "Analysis of the long-term availability of uranium: The influence of dynamic constraints and market competition," Energy Policy, Elsevier, vol. 105(C), pages 98-107.
    6. Muellner, Nikolaus & Arnold, Nikolaus & Gufler, Klaus & Kromp, Wolfgang & Renneberg, Wolfgang & Liebert, Wolfgang, 2021. "Nuclear energy - The solution to climate change?," Energy Policy, Elsevier, vol. 155(C).
    7. Shang, Delei & Geissler, Bernhard & Mew, Michael & Satalkina, Liliya & Zenk, Lukas & Tulsidas, Harikrishnan & Barker, Lee & El-Yahyaoui, Adil & Hussein, Ahmed & Taha, Mohamed & Zheng, Yanhua & Wang, M, 2021. "Unconventional uranium in China's phosphate rock: Review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    8. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2015. "Global zero-carbon energy pathways using viable mixes of nuclear and renewables," Applied Energy, Elsevier, vol. 143(C), pages 451-459.
    9. Islam, Md. Monirul & Shahbaz, Muhammad & Samargandi, Nahla, 2024. "The nexus between Russian uranium exports and US nuclear-energy consumption: Do the spillover effects of geopolitical risks matter?," Energy, Elsevier, vol. 293(C).
    10. Dennis A. Mwalongo & Nils H. Haneklaus & Jacob B. Lisuma & Nelson Mpumi & Aloyce I. Amasi & Jerome M. Mwimanzi & Furaha M. Chuma & Thomas T. Kivevele & Kelvin M. Mtei, 2024. "Uranium Dissemination with Phosphate Fertilizers Globally: A Systematic Review with Focus on East Africa," Sustainability, MDPI, vol. 16(4), pages 1-21, February.
    11. Tulsidas, Harikrishnan & Gabriel, Sophie & Kiegiel, Katarzyna & Haneklaus, Nils, 2019. "Uranium resources in EU phosphate rock imports," Resources Policy, Elsevier, vol. 61(C), pages 151-156.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Budzianowski, Wojciech Marcin, 2011. "Can ‘negative net CO2 emissions’ from decarbonised biogas-to-electricity contribute to solving Poland’s carbon capture and sequestration dilemmas?," Energy, Elsevier, vol. 36(11), pages 6318-6325.
    2. Boris Crnobrnja & Krešimir Trontl & Dubravko Pevec & Mario Matijević, 2019. "Dynamics for Sustainable Nuclear Buildup Based on LWR and FBR Technologies and Its Impact on CO 2 Emission Reduction," Energies, MDPI, vol. 13(1), pages 1-13, December.
    3. Knapp, Vladimir & Pevec, Dubravko, 2018. "Promises and limitations of nuclear fission energy in combating climate change," Energy Policy, Elsevier, vol. 120(C), pages 94-99.
    4. Muellner, Nikolaus & Arnold, Nikolaus & Gufler, Klaus & Kromp, Wolfgang & Renneberg, Wolfgang & Liebert, Wolfgang, 2021. "Nuclear energy - The solution to climate change?," Energy Policy, Elsevier, vol. 155(C).
    5. Luis Obregon & Cristhian Orozco & Josu Camargo & Jorge Duarte & Guillermo Valencia, 2019. "Research trend on Nuclear Energy from 2008 to 2018: A Bibliometric Analysis," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 542-551.

    More about this item

    Keywords

    Uranium; Nuclear power fleets;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-01227908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.