IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00492124.html
   My bibliography  Save this paper

An Econometric Study of Vine Copulas

Author

Listed:
  • Dominique Guegan

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique, PSE - Paris School of Economics - UP1 - Université Paris 1 Panthéon-Sorbonne - ENS-PSL - École normale supérieure - Paris - PSL - Université Paris Sciences et Lettres - EHESS - École des hautes études en sciences sociales - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Pierre-André Maugis

    (CES - Centre d'économie de la Sorbonne - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

We present a new recursive algorithm to construct vine copulas based on an underlying tree structure. This new structure is interesting to compute multivariate distributions for dependent random variables. We proove the asymptotic normality of the vine copula parameter estimator and show that all vine copula parameter estimators have comparable variance. Both results are crucial to motivate any econometrical work based on vine copulas. We provide an application of vine copulas to estimate the VaR of a portfolio, and show they offer significant improvement as compared to a benchmark estimator based on a GARCH model.

Suggested Citation

  • Dominique Guegan & Pierre-André Maugis, 2010. "An Econometric Study of Vine Copulas," Post-Print halshs-00492124, HAL.
  • Handle: RePEc:hal:journl:halshs-00492124
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00492124
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00492124/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dominique Guegan & Pierre-André Maugis, 2008. "New prospects on vines," Documents de travail du Centre d'Economie de la Sorbonne b08095, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Mar 2010.
    2. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    3. Lorán Chollete & Andréas Heinen & Alfonso Valdesogo, 2009. "Modeling International Financial Returns with a Multivariate Regime-switching Copula," Journal of Financial Econometrics, Oxford University Press, vol. 7(4), pages 437-480, Fall.
    4. Chen, Xiaohong & Fan, Yanqin & Patton, Andrew J., 2004. "Simple tests for models of dependence between multiple financial time series, with applications to U.S. equity returns and exchange rates," LSE Research Online Documents on Economics 24681, London School of Economics and Political Science, LSE Library.
    5. Andrew J. Patton, 2006. "Modelling Asymmetric Exchange Rate Dependence," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 47(2), pages 527-556, May.
    6. Aas, Kjersti & Czado, Claudia & Frigessi, Arnoldo & Bakken, Henrik, 2009. "Pair-copula constructions of multiple dependence," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 182-198, April.
    7. Fischer, Matthias J. & Köck, Christian & Schlüter, Stephan & Weigert, Florian, 2007. "Multivariate Copula Models at Work: Outperforming the desert island copula?," Discussion Papers 79/2007, Friedrich-Alexander University Erlangen-Nuremberg, Chair of Statistics and Econometrics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01467857, HAL.
    2. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2018. "A novel multivariate risk measure: the Kendall VaR," Post-Print halshs-01467857, HAL.
    3. Chebbi, Ali & Hedhli, Amel, 2022. "Revisiting the accuracy of standard VaR methods for risk assessment: Using the Copula–EVT multidimensional approach for stock markets in the MENA region," The Quarterly Review of Economics and Finance, Elsevier, vol. 84(C), pages 430-445.
    4. Antonov I. N. & Knyazev A. G. & Lepekhin O. A., 2016. "Copula Models of the Joint Distribution of Exchange Rates," World of economics and management / Vestnik NSU. Series: Social and Economics Sciences, Socionet, vol. 16(4), pages 20-38.
    5. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    6. Zhang, Bangzheng & Wei, Yu & Yu, Jiang & Lai, Xiaodong & Peng, Zhenfeng, 2014. "Forecasting VaR and ES of stock index portfolio: A Vine copula method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 416(C), pages 112-124.
    7. Bukre Yildirim Kulekci & Gulden Poyraz & Ismail Gur & Ozan Evkaya, 2023. "Dependence Analysis of the ISE100 Banking Sector Using Vine Copula," Istanbul Journal of Economics-Istanbul Iktisat Dergisi, Istanbul University, Faculty of Economics, vol. 73(73-1), pages 55-81, June.
    8. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    9. Matthieu Garcin & Dominique Guegan & Bertrand Hassani, 2017. "A novel multivariate risk measure: the Kendall VaR," Documents de travail du Centre d'Economie de la Sorbonne 17008r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Apr 2018.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominique Guegan & Pierre-André Maugis, 2010. "An Econometric Study of Vine Copulas," Documents de travail du Centre d'Economie de la Sorbonne 10040, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. Dominique Guegan & Pierre-André Maugis, 2011. "An econometric Study for Vine Copulas," PSE-Ecole d'économie de Paris (Postprint) halshs-00645799, HAL.
    3. Dominique Guegan & Pierre-André Maugis, 2011. "An econometric Study for Vine Copulas," Post-Print halshs-00645799, HAL.
    4. Manner, Hans & Alavi Fard, Farzad & Pourkhanali, Armin & Tafakori, Laleh, 2019. "Forecasting the joint distribution of Australian electricity prices using dynamic vine copulae," Energy Economics, Elsevier, vol. 78(C), pages 143-164.
    5. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    6. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    7. Liu, Mengqiao & Zhang, Yu Yvette & Jia, Ruixin, 2024. "Is the Chinese gold product a hedge or safe haven for Chinese overseas investors?," 2024 Annual Meeting, July 28-30, New Orleans, LA 343698, Agricultural and Applied Economics Association.
    8. Koliai, Lyes, 2016. "Extreme risk modeling: An EVT–pair-copulas approach for financial stress tests," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 1-22.
    9. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    10. BenSaïda, Ahmed, 2018. "The contagion effect in European sovereign debt markets: A regime-switching vine copula approach," International Review of Financial Analysis, Elsevier, vol. 58(C), pages 153-165.
    11. Patton, Andrew J., 2012. "A review of copula models for economic time series," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 4-18.
    12. David E. Allen & Michael McAleer & Abhay K. Singh, 2017. "Risk Measurement and Risk Modelling Using Applications of Vine Copulas," Sustainability, MDPI, vol. 9(10), pages 1-34, September.
    13. Pierre-André Maugis & Dominique Guegan, 2010. "Note on new prospects on vines," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00471362, HAL.
    14. Vahidin Jeleskovic & Mirko Meloni & Zahid Irshad Younas, 2020. "Cryptocurrencies: A Copula Based Approach for Asymmetric Risk Marginal Allocations," MAGKS Papers on Economics 202034, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    15. Ojea-Ferreiro, Javier & Reboredo, Juan C., 2022. "Exchange rates and the global transmission of equity market shocks," Economic Modelling, Elsevier, vol. 114(C).
    16. Su, Xiaoshan & Bai, Manying & Han, Yingwei, 2021. "Robust portfolio selection with regime switching and asymmetric dependence," Economic Modelling, Elsevier, vol. 99(C).
    17. Beatriz de la Flor & Javier Ojea-Ferreiro & Eva Ferreira, 2022. "The Hedging Cost of Forgetting the Exchange Rate," Documentos de Trabajo del ICAE 2022-01, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    18. Fei, Fei & Fuertes, Ana-Maria & Kalotychou, Elena, 2017. "Dependence in credit default swap and equity markets: Dynamic copula with Markov-switching," International Journal of Forecasting, Elsevier, vol. 33(3), pages 662-678.
    19. Fantazzini, Dean, 2009. "The effects of misspecified marginals and copulas on computing the value at risk: A Monte Carlo study," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2168-2188, April.
    20. Han, Yingying & Gong, Pu & Zhou, Xiang, 2016. "Correlations and risk contagion between mixed assets and mixed-asset portfolio VaR measurements in a dynamic view: An application based on time varying copula models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 940-953.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00492124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.