IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00214289.html
   My bibliography  Save this paper

The duality between the anti-exchange closure operators and the path independent choice operators on a finite set

Author

Listed:
  • Bernard Monjardet

    (CERMSEM - CEntre de Recherche en Mathématiques, Statistique et Économie Mathématique - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

  • Raderanirina Vololonirina

    (CERMSEM - CEntre de Recherche en Mathématiques, Statistique et Économie Mathématique - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

In this paper, we show that the correspondence discovered by Koshevoy ([18]) and Johnson and Dean ([15],[16]) between anti-exchange closure operators and path independent choice operators is a duality between two semilattices of such operators. Then we use this duality to obtain results concerning the "ordinal" representations of path independent choice functions from the theory of anti-exchange closure operators.

Suggested Citation

  • Bernard Monjardet & Raderanirina Vololonirina, 2001. "The duality between the anti-exchange closure operators and the path independent choice operators on a finite set," Post-Print halshs-00214289, HAL.
  • Handle: RePEc:hal:journl:halshs-00214289
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00214289
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00214289/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Aleskerov, Fuad, 1995. "Locality in Voting Models," Mathematical Social Sciences, Elsevier, vol. 30(3), pages 320-321, December.
    2. Koshevoy, Gleb A., 1999. "Choice functions and abstract convex geometries," Mathematical Social Sciences, Elsevier, vol. 38(1), pages 35-44, July.
    3. Edelman, Paul H., 1997. "A note on voting," Mathematical Social Sciences, Elsevier, vol. 34(1), pages 37-50, August.
    4. Amartya K. Sen, 1971. "Choice Functions and Revealed Preference," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 38(3), pages 307-317.
    5. Richard A. Dean & Mark R. Johnson, 2000. "Locally Complete Path Independent Choice Functions and Their Lattices," Econometric Society World Congress 2000 Contributed Papers 0622, Econometric Society.
    6. Plott, Charles R, 1973. "Path Independence, Rationality, and Social Choice," Econometrica, Econometric Society, vol. 41(6), pages 1075-1091, November.
    7. Caspard, N. & Monjardet, B., 2000. "The Lattice of Closure Systems, Closure Operators and Implicational Systems on a Finite Set : A Survey," Papiers d'Economie Mathématique et Applications 2000.120, Université Panthéon-Sorbonne (Paris 1).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriela Bordalo & Nathalie Caspard & Bernard Monjardet, 2009. "Going down in (semi)lattices of finite Moore families and convex geometries," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00308785, HAL.
    2. Bernard Monjardet & Vololonirina Raderanirina, 2004. "Lattices of choice functions and consensus problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 23(3), pages 349-382, December.
    3. Bernard Monjardet, 2007. "Some Order Dualities In Logic, Games And Choices," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-12.
    4. Danilov, V. & Koshevoy, G., 2005. "Mathematics of Plott choice functions," Mathematical Social Sciences, Elsevier, vol. 49(3), pages 245-272, May.
    5. Matthew Ryan, 2010. "Mixture sets on finite domains," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 33(2), pages 139-147, November.
    6. repec:ebl:ecbull:v:4:y:2004:i:3:p:1-3 is not listed on IDEAS
    7. Monjardet, Bernard, 2003. "The presence of lattice theory in discrete problems of mathematical social sciences. Why," Mathematical Social Sciences, Elsevier, vol. 46(2), pages 103-144, October.
    8. Danilov, V. & Koshevoy, G., 2006. "A new characterization of the path independent choice functions," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 238-245, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alva, Samson, 2018. "WARP and combinatorial choice," Journal of Economic Theory, Elsevier, vol. 173(C), pages 320-333.
    2. Domenico Cantone & Alfio Giarlotta & Stephen Watson, 2021. "Choice resolutions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 56(4), pages 713-753, May.
    3. Matthew Ryan, 2016. "Essentiality and convexity in the ranking of opportunity sets," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 47(4), pages 853-877, December.
    4. Jean Diatta, 2009. "On critical sets of a finite Moore family," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 3(3), pages 291-304, December.
    5. Matthew Ryan, 2016. "Essentiality and Convexity in the Ranking of Opportunity Sets," Working Papers 2016-01, Auckland University of Technology, Department of Economics.
    6. Samson Alva & Battal Dou{g}an, 2021. "Choice and Market Design," Papers 2110.15446, arXiv.org, revised Nov 2021.
    7. Chambers, Christopher P. & Miller, Alan D. & Yenmez, M. Bumin, 2020. "Closure and preferences," Journal of Mathematical Economics, Elsevier, vol. 88(C), pages 161-166.
    8. Walter Bossert & Yves Sprumont, 2009. "Non‐Deteriorating Choice," Economica, London School of Economics and Political Science, vol. 76(302), pages 337-363, April.
    9. Mongin, P., 1998. "Does Optimization Imply Rationality?," Papers 9817, Paris X - Nanterre, U.F.R. de Sc. Ec. Gest. Maths Infor..
    10. Juan P. Aguilera & Levent Ülkü, 2017. "On the maximization of menu-dependent interval orders," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 48(2), pages 357-366, February.
    11. Sean Horan & Vikram Manjunath, 2022. "Lexicographic Composition of Choice Functions," Papers 2209.09293, arXiv.org.
    12. Nehring, Klaus, 1996. "Maximal elements of non-binary choice functions on compact sets," Economics Letters, Elsevier, vol. 50(3), pages 337-340, March.
    13. Furtado, Bruno A. & Nascimento, Leandro & Riella, Gil, 2023. "Rational choice with full-comparability domains," Journal of Economic Behavior & Organization, Elsevier, vol. 216(C), pages 124-135.
    14. Danilov, V. & Koshevoy, G., 2005. "Mathematics of Plott choice functions," Mathematical Social Sciences, Elsevier, vol. 49(3), pages 245-272, May.
    15. John Duggan, 2019. "Weak rationalizability and Arrovian impossibility theorems for responsive social choice," Public Choice, Springer, vol. 179(1), pages 7-40, April.
    16. Susumu Cato, 2018. "Choice functions and weak Nash axioms," Review of Economic Design, Springer;Society for Economic Design, vol. 22(3), pages 159-176, December.
    17. Koshevoy, Gleb & Savaglio, Ernesto, 2023. "On rational choice from lists of sets," Journal of Mathematical Economics, Elsevier, vol. 109(C).
    18. Bernard Monjardet, 2007. "Some Order Dualities In Logic, Games And Choices," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 9(01), pages 1-12.
    19. Danilov, V., 2012. "Outcast Condition in the Choice Theory," Journal of the New Economic Association, New Economic Association, vol. 13(1), pages 34-49.
    20. Danilov, V. & Koshevoy, G., 2006. "A new characterization of the path independent choice functions," Mathematical Social Sciences, Elsevier, vol. 51(2), pages 238-245, March.

    More about this item

    Keywords

    semilattice; Anti-exchange closure operator; choice function; convex geometry; path independence; partial order; semilattice.; demi-treillis; fermeture; fonction de choix; géométrie convexe; indépendance du chemin; ordre;
    All these keywords.

    JEL classification:

    • D61 - Microeconomics - - Welfare Economics - - - Allocative Efficiency; Cost-Benefit Analysis
    • D51 - Microeconomics - - General Equilibrium and Disequilibrium - - - Exchange and Production Economies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00214289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.