IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-00086028.html
   My bibliography  Save this paper

Single Crossing Lorenz Curves and Inequality Comparisons

Author

Listed:
  • Thibault Gajdos

    (CREST - Centre de Recherche en Économie et Statistique - ENSAI - Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] - X - École polytechnique - IP Paris - Institut Polytechnique de Paris - ENSAE Paris - École Nationale de la Statistique et de l'Administration Économique - CNRS - Centre National de la Recherche Scientifique, EUREQUA - Equipe Universitaire de Recherche en Economie Quantitative - UP1 - Université Paris 1 Panthéon-Sorbonne - CNRS - Centre National de la Recherche Scientifique)

Abstract

Since the order generated by the Lorenz criterion is partial, it is a natural question to wonder how to extend this order. Most of the literature that is concerned with that question focuses on local changes in the income distribution. We follow a different approach, and define uniform $\alpha$-spreads, which are global changes in the income distribution. We give necessary and sufficient conditions for an Expected Utility or Rank-Dependent Expected Utility maximizer to respect the principle of transfers and to be favorable to uniform $\alpha$-spreads. Finally, we apply these results to inequality indices.

Suggested Citation

  • Thibault Gajdos, 2004. "Single Crossing Lorenz Curves and Inequality Comparisons," Post-Print halshs-00086028, HAL.
  • Handle: RePEc:hal:journl:halshs-00086028
    DOI: 10.1016/S0165-4896(03)00078-7
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00086028
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00086028/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/S0165-4896(03)00078-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    2. Alain Chateauneuf & Michéle Cohen & Isaac Meilijson, 2005. "More pessimism than greediness: a characterization of monotone risk aversion in the rank-dependent expected utility model," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 25(3), pages 649-667, April.
    3. Davies James & Hoy Michael, 1994. "The Normative Significance of Using Third-Degree Stochastic Dominance in Comparing Income Distributions," Journal of Economic Theory, Elsevier, vol. 64(2), pages 520-530, December.
    4. Claudio Zoli, 1999. "Intersecting generalized Lorenz curves and the Gini index," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 16(2), pages 183-196.
    5. Foster, James E. & Shorrocks, Anthony F., 1988. "Inequality and poverty orderings," European Economic Review, Elsevier, vol. 32(2-3), pages 654-661, March.
    6. Hong, Chew Soo & Karni, Edi & Safra, Zvi, 1987. "Risk aversion in the theory of expected utility with rank dependent probabilities," Journal of Economic Theory, Elsevier, vol. 42(2), pages 370-381, August.
    7. Anthony F. Shorrocks & James E. Foster, 1987. "Transfer Sensitive Inequality Measures," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 54(3), pages 485-497.
    8. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    9. Sen, Amartya, 1973. "On Economic Inequality," OUP Catalogue, Oxford University Press, number 9780198281931.
    10. Bossert, Walter, 1990. "An axiomatization of the single-series Ginis," Journal of Economic Theory, Elsevier, vol. 50(1), pages 82-92, February.
    11. Atkinson, Anthony B., 1970. "On the measurement of inequality," Journal of Economic Theory, Elsevier, vol. 2(3), pages 244-263, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gajdos, Thibault, 2004. "Single crossing Lorenz curves and inequality comparisons," Mathematical Social Sciences, Elsevier, vol. 47(1), pages 21-36, January.
    2. Chateauneuf, Alain & Gajdos, Thibault & Wilthien, Pierre-Henry, 2002. "The Principle of Strong Diminishing Transfer," Journal of Economic Theory, Elsevier, vol. 103(2), pages 311-333, April.
    3. Rolf Aaberge, 2009. "Ranking intersecting Lorenz curves," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 33(2), pages 235-259, August.
    4. Claudio Zoli, 2002. "Inverse stochastic dominance, inequality measurement and Gini indices," Journal of Economics, Springer, vol. 77(1), pages 119-161, December.
    5. Jean-Yves Duclos & Paul Makdissi, 2007. "Restricted Inequality and Relative Poverty," Research on Economic Inequality, in: Inequality and Poverty, pages 255-280, Emerald Group Publishing Limited.
    6. Ryan, Matthew J., 2006. "Risk aversion in RDEU," Journal of Mathematical Economics, Elsevier, vol. 42(6), pages 675-697, September.
    7. Elisa Pagani, 2015. "Certainty Equivalent: Many Meanings of a Mean," Working Papers 24/2015, University of Verona, Department of Economics.
    8. Zuber, Stéphane & Asheim, Geir B., 2012. "Justifying social discounting: The rank-discounted utilitarian approach," Journal of Economic Theory, Elsevier, vol. 147(4), pages 1572-1601.
    9. Jean‐Yves Duclos & Paul Makdissi, 2004. "Restricted and Unrestricted Dominance for Welfare, Inequality, and Poverty Orderings," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 6(1), pages 145-164, February.
    10. Aaberge, Rolf & Havnes, Tarjei & Mogstad, Magne, 2013. "A Theory for Ranking Distribution Functions," IZA Discussion Papers 7738, Institute of Labor Economics (IZA).
    11. Oihana Aristondo & JosŽ Luis Garc’a-Lapresta & Casilda Lasso de la Vega & Ricardo Alberto Marques Pereira, 2012. "Classical inequality indices, welfare functions, and the dual decomposition," DISA Working Papers 2012/06, Department of Computer and Management Sciences, University of Trento, Italy, revised Jun 2012.
    12. Satya Chakravarty, 2007. "A deprivation-based axiomatic characterization of the absolute Bonferroni index of inequality," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 5(3), pages 339-351, December.
    13. Jean-Yves Duclos & Paul Makdissi, 2000. "Restricted and Unrestricted Dominance Welfare, Inequality and Povery Orderings," Cahiers de recherche 00-01, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    14. Francesco Andreoli & Claudio Zoli, 2020. "From unidimensional to multidimensional inequality: a review," METRON, Springer;Sapienza Università di Roma, vol. 78(1), pages 5-42, April.
    15. Luis José Imedio Olmedo & Elena Bárcena Martín, 2007. "Dos familias numerables de medidas de desigualdad," Investigaciones Economicas, Fundación SEPI, vol. 31(1), pages 191-217, January.
    16. Rolf Aaberge & Tarjei Havnes & Magne Mogstad, 2021. "Ranking intersecting distribution functions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 639-662, September.
    17. Ida Petrillo, 2017. "Ranking income distributions: a rank-dependent and needs-based approach," SERIES 03-2017, Dipartimento di Economia e Finanza - Università degli Studi di Bari "Aldo Moro", revised Jul 2017.
    18. Satya R. Chakravarty & Pietro Muliere, 2003. "Welfare indicators: A review and new perspectives. 1. Measurement of inequality," Metron - International Journal of Statistics, Dipartimento di Statistica, Probabilità e Statistiche Applicate - University of Rome, vol. 0(3), pages 457-497.
    19. Chateauneuf, Alain & Cohen, Michele & Meilijson, Isaac, 2004. "Four notions of mean-preserving increase in risk, risk attitudes and applications to the rank-dependent expected utility model," Journal of Mathematical Economics, Elsevier, vol. 40(5), pages 547-571, August.
    20. Jean-Yves Duclos & Paul Makdissi & Quentin Wodon, 2008. "Socially Improving Tax Reforms," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 49(4), pages 1505-1537, November.

    More about this item

    Keywords

    Inequality measures; Intersecting Lorenz Curves; Spreads;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-00086028. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.