IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04910482.html
   My bibliography  Save this paper

Extreme risk measures for train delay time

Author

Listed:
  • Alfred Mbairadjim Moussa

    (LAMETA - Laboratoire Montpelliérain d'Économie Théorique et Appliquée - UM1 - Université Montpellier 1 - UPVM - Université Paul-Valéry - Montpellier 3 - INRA - Institut National de la Recherche Agronomique - Montpellier SupAgro - Centre international d'études supérieures en sciences agronomiques - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

  • Maïté Stéphan

    (LAMETA - Laboratoire Montpelliérain d'Économie Théorique et Appliquée - UM1 - Université Montpellier 1 - UPVM - Université Paul-Valéry - Montpellier 3 - INRA - Institut National de la Recherche Agronomique - Montpellier SupAgro - Centre international d'études supérieures en sciences agronomiques - UM - Université de Montpellier - CNRS - Centre National de la Recherche Scientifique - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

Abstract

Following the financial literature on risk management, this paper introduces some risk measure for train delay time in the probabilistic framework. The measures of extreme risk are defined as quantile of train delay time assumed as positive continuous random variables. Their close-formed expressions and empirical calibration are discussed under the assumptions of log-normal, log-t-Student and Weibull distributions. A method for the performance evaluation of the proposed measure is presented. Finally, an empirical study illustrates the effectiveness of our modeling approach and shows the interest of its practical application.

Suggested Citation

  • Alfred Mbairadjim Moussa & Maïté Stéphan, 2014. "Extreme risk measures for train delay time," Post-Print hal-04910482, HAL.
  • Handle: RePEc:hal:journl:hal-04910482
    Note: View the original document on HAL open archive server: https://hal.science/hal-04910482v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04910482v1/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Börjesson, Maria & Eliasson, Jonas, 2011. "On the use of "average delay" as a measure of train reliability," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(3), pages 171-184, March.
    2. van Lint, J.W.C. & van Zuylen, Henk J. & Tu, H., 2008. "Travel time unreliability on freeways: Why measures based on variance tell only half the story," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(1), pages 258-277, January.
    3. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    4. Engle, Robert F. & Manganelli, Simone, 2001. "Value at risk models in finance," Working Paper Series 75, European Central Bank.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szubzda Filip & Chlebus Marcin, 2019. "Comparison of Block Maxima and Peaks Over Threshold Value-at-Risk models for market risk in various economic conditions," Central European Economic Journal, Sciendo, vol. 6(53), pages 70-85, January.
    2. Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
    3. Cociuba Mihail Ioan & Zapodeanu Daniela & Kulcsar Edina, 2014. "Backtesting Value At Risk Models In The Presence Of Structural Break On The Romanian And Hungarian Stock Markets," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 802-812, July.
    4. George Kouretas & Leonidas Zarangas, 2005. "Conditional autoregressive valu at risk by regression quantile: Estimatingmarket risk for major stock markets," Working Papers 0521, University of Crete, Department of Economics.
    5. Marios Nerouppos & David Saunders & Costas Xiouros & Stavros A. Zenios, 2006. "Risk Management in Emerging Markets: Practical Methodologies and Empirical Tests," Multinational Finance Journal, Multinational Finance Journal, vol. 10(3-4), pages 179-221, September.
    6. Szego, Giorgio, 2005. "Measures of risk," European Journal of Operational Research, Elsevier, vol. 163(1), pages 5-19, May.
    7. Rossignolo, Adrian F. & Fethi, Meryem Duygun & Shaban, Mohamed, 2012. "Value-at-Risk models and Basel capital charges," Journal of Financial Stability, Elsevier, vol. 8(4), pages 303-319.
    8. Xu, Xiangdong & Chen, Anthony & Cheng, Lin & Yang, Chao, 2017. "A link-based mean-excess traffic equilibrium model under uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 53-75.
    9. Chen, Anthony & Zhou, Zhong, 2010. "The [alpha]-reliable mean-excess traffic equilibrium model with stochastic travel times," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 493-513, May.
    10. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    11. Blayac, Thierry & Stéphan, Maïté, 2021. "Are retrospective rail punctuality indicators useful? Evidence from users perceptions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 146(C), pages 193-213.
    12. Santiago Carrillo Menéndez & Bertrand Kian Hassani, 2021. "Expected Shortfall Reliability—Added Value of Traditional Statistics and Advanced Artificial Intelligence for Market Risk Measurement Purposes," Mathematics, MDPI, vol. 9(17), pages 1-20, September.
    13. Ben Salem, Ameni & Safer, Imene & Khefacha, Islem, 2022. "Value-at-Risk (VAR) Estimation Methods: Empirical Analysis based on BRICS Markets," MPRA Paper 113350, University Library of Munich, Germany, revised May 2022.
    14. Nieto, María Rosa, 2008. "Measuring financial risk : comparison of alternative procedures to estimate VaR and ES," DES - Working Papers. Statistics and Econometrics. WS ws087326, Universidad Carlos III de Madrid. Departamento de Estadística.
    15. A. Amendola & V. Candila, 2016. "Evaluation of volatility predictions in a VaR framework," Quantitative Finance, Taylor & Francis Journals, vol. 16(5), pages 695-709, May.
    16. Fernanda Maria Müller & Marcelo Brutti Righi, 2018. "Numerical comparison of multivariate models to forecasting risk measures," Risk Management, Palgrave Macmillan, vol. 20(1), pages 29-50, February.
    17. Ameni Ben Salem & Imene Safer & Islem Khefacha, 2021. "Value at Risk Estimation For the BRICS Countries : A Comparative Study," Post-Print hal-03502428, HAL.
    18. Halkos, George & Tsirivis, Apostolos, 2019. "Using Value-at-Risk for effective energy portfolio risk management," MPRA Paper 91674, University Library of Munich, Germany.
    19. Xu, Xiangdong & Chen, Anthony & Cheng, Lin & Lo, Hong K., 2014. "Modeling distribution tail in network performance assessment: A mean-excess total travel time risk measure and analytical estimation method," Transportation Research Part B: Methodological, Elsevier, vol. 66(C), pages 32-49.
    20. Sofiane Aboura, 2014. "When the U.S. Stock Market Becomes Extreme?," Risks, MDPI, vol. 2(2), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04910482. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.