IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04732547.html
   My bibliography  Save this paper

Adaptation of crop-livestock systems to price and farm size variations : simulation based on the Orfee bioeconomic model
[Adaptation des systèmes de polycultures-élevages aux variations de prix et de taille de l’exploitation : simulation à partir du modèle bioéconomique Orfee. Innovations Agronomiques 72, 77-89]

Author

Listed:
  • Lucille Steinmetz

    (UMRH - Unité Mixte de Recherche sur les Herbivores - UMR 1213 - VAS - VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

  • Claire Mosnier

    (UMRH - Unité Mixte de Recherche sur les Herbivores - UMR 1213 - VAS - VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement - INRAE - Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement)

Abstract

Until the 1950s, crop-livestock systems (combination of crop and livestock farming) ruled France. Since then, specialized systems less numerous and bigger have been prevailing. The objective of this study is to analyse the impacts of price variations and land expansion on crop-livestock farming systems. Simulations were run using the bioeconomical model Orfee applied to three farm types in Lorraine, Normandie and Midi-Pyrénées. The Norman context seems to be the most stable, as a result of milk profitability. But, milk production is stopped for price drop higher than -20%. The livestock-crop share is the most sensitive to price variations in the Midi-Pyrénées system where the returns per worker of the crops and the beef system are close. Beef suckler farms keep livestock on permanent pasture regardless of the price variations.

Suggested Citation

  • Lucille Steinmetz & Claire Mosnier, 2019. "Adaptation of crop-livestock systems to price and farm size variations : simulation based on the Orfee bioeconomic model [Adaptation des systèmes de polycultures-élevages aux variations de prix et ," Post-Print hal-04732547, HAL.
  • Handle: RePEc:hal:journl:hal-04732547
    DOI: 10.15454/O65NF2
    Note: View the original document on HAL open archive server: https://hal.science/hal-04732547v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04732547v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.15454/O65NF2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Mosnier, Claire & Duclos, Anne & Agabriel, Jacques & Gac, Armelle, 2017. "Orfee: A bio-economic model to simulate integrated and intensive management of mixed crop-livestock farms and their greenhouse gas emissions," Agricultural Systems, Elsevier, vol. 157(C), pages 202-215.
    2. M. Mazoyer & Laurence Roudart, 2002. "Histoire des agricultures du monde: Du Néolithique à la crise contemporaine," ULB Institutional Repository 2013/44785, ULB -- Universite Libre de Bruxelles.
    3. Janssen, Sander & van Ittersum, Martin K., 2007. "Assessing farm innovations and responses to policies: A review of bio-economic farm models," Agricultural Systems, Elsevier, vol. 94(3), pages 622-636, June.
    4. Mosnier, C. & Agabriel, J. & Lherm, M. & Reynaud, A., 2009. "A dynamic bio-economic model to simulate optimal adjustments of suckler cow farm management to production and market shocks in France," Agricultural Systems, Elsevier, vol. 102(1-3), pages 77-88, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diakité, Z.R. & Corson, M.S. & Brunschwig, G. & Baumont, R. & Mosnier, C., 2019. "Profit stability of mixed dairy and beef production systems of the mountain area of southern Auvergne (France) in the face of price variations: Bioeconomic simulation," Agricultural Systems, Elsevier, vol. 171(C), pages 126-134.
    2. Soraya Tanure & Carlos Nabinger & João Luiz Becker, 2015. "Bioeconomic Model of Decision Support System for Farm Management: Proposal of a Mathematical Model," Systems Research and Behavioral Science, Wiley Blackwell, vol. 32(6), pages 658-671, November.
    3. Mosnier, Claire & Duclos, Anne & Agabriel, Jacques & Gac, Armelle, 2017. "Orfee: A bio-economic model to simulate integrated and intensive management of mixed crop-livestock farms and their greenhouse gas emissions," Agricultural Systems, Elsevier, vol. 157(C), pages 202-215.
    4. Robert, Marion & Thomas, Alban & Bergez, Jacques Eric, 2016. "Processes of adpatation in farm decision-making models. A review," TSE Working Papers 16-731, Toulouse School of Economics (TSE).
    5. Ridier, Aude & Chaib, Karim & Roussy, Caroline, 2016. "A Dynamic Stochastic Programming model of crop rotation choice to test the adoption of long rotation under price and production risks," European Journal of Operational Research, Elsevier, vol. 252(1), pages 270-279.
    6. Dieguez Cameroni, F.J. & Terra, R. & Tabarez, S. & Bommel, P. & Corral, J. & Bartaburu, D. & Pereira, M. & Montes, E. & Duarte, E. & Morales Grosskopf, H., 2014. "Virtual experiments using a participatory model to explore interactions between climatic variability and management decisions in extensive grazing systems in the basaltic region of Uruguay," Agricultural Systems, Elsevier, vol. 130(C), pages 89-104.
    7. Leite, João Guilherme Dal Belo & Silva, João Vasco & van Ittersum, Martin K., 2014. "Integrated assessment of biodiesel policies aimed at family farms in Brazil," Agricultural Systems, Elsevier, vol. 131(C), pages 64-76.
    8. Martin, G., 2015. "A conceptual framework to support adaptation of farming systems – Development and application with Forage Rummy," Agricultural Systems, Elsevier, vol. 132(C), pages 52-61.
    9. Dono, Gabriele & Cortignani, Raffaele & Doro, Luca & Giraldo, Luca & Ledda, Luigi & Pasqui, Massimiliano & Roggero, Pier Paolo, 2013. "Adapting to uncertainty associated with short-term climate variability changes in irrigated Mediterranean farming systems," Agricultural Systems, Elsevier, vol. 117(C), pages 1-12.
    10. Wang Cheng, 2022. "The Impact of Enterprise Digital Transformation on Service Innovation Performance -- Taking the construction enterprises in the Yangtze River Delta as the research object," International Journal of Science and Business, IJSAB International, vol. 14(1), pages 155-172.
    11. Hutchings, Timothy R., 2009. "A financial analysis of the effect of the mix of crop and sheep enterprises on the risk profile of dryland farms in south-eastern Australia – Part 1," AFBM Journal, Australasian Farm Business Management Network, vol. 6(1), pages 1-16, October.
    12. Schreefel, L. & de Boer, I.J.M. & Timler, C.J. & Groot, J.C.J. & Zwetsloot, M.J. & Creamer, R.E. & Schrijver, A. Pas & van Zanten, H.H.E. & Schulte, R.P.O., 2022. "How to make regenerative practices work on the farm: A modelling framework," Agricultural Systems, Elsevier, vol. 198(C).
    13. Parisa Aghajanzadeh-Darzi & Pierre-Alain Jayet & Athanasios Petsakos, 2017. "Improvement of a Bio-Economic Mathematical Programming Model in the Case of On-Farm Source Inputs and Outputs," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 15(3), pages 489-508, September.
    14. Jacquet, Florence & Butault, Jean-Pierre & Guichard, Laurence, 2011. "An economic analysis of the possibility of reducing pesticides in French field crops," Ecological Economics, Elsevier, vol. 70(9), pages 1638-1648, July.
    15. Gómez-Limón, José A. & Gutiérrez-Martín, Carlos & Riesgo, Laura, 2016. "Modeling at farm level: Positive Multi-Attribute Utility Programming," Omega, Elsevier, vol. 65(C), pages 17-27.
    16. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    17. Fleskens, Luuk & Graaff, Jan de, 2010. "Conserving natural resources in olive orchards on sloping land: Alternative goal programming approaches towards effective design of cross-compliance and agri-environmental measures," Agricultural Systems, Elsevier, vol. 103(8), pages 521-534, October.
    18. Yeh, D. Adeline & Gomez, Miguel I. & Lin Lawell, C.-Y. Cynthia, 2020. "Sustainable Pest Management Under Uncertainty: A Dynamic Bioeconomic Analysis of Lowbush Blueberry Production," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304326, Agricultural and Applied Economics Association.
    19. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    20. Groot, Jeroen C.J. & Oomen, Gerard J.M. & Rossing, Walter A.H., 2012. "Multi-objective optimization and design of farming systems," Agricultural Systems, Elsevier, vol. 110(C), pages 63-77.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04732547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.