IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03188217.html
   My bibliography  Save this paper

Security under Uncertainty : Adaptive Attackers Are More Challenging to Human Defenders than Random Attackers

Author

Listed:
  • Frederic Moisan

    (EM - EMLyon Business School)

  • Cleotilde Gonzalez

Abstract

Game Theory is a common approach used to understand attacker and defender motives, strategies, and allocation of limited security resources. For example, many defense algorithms are based on game-theoretic solutions that conclude that randomization of defense actions assures unpredictability, creating difficulties for a human attacker. However, many game-theoretic solutions often rely on idealized assumptions of decision making that underplay the role of human cognition and information uncertainty. The consequence is that we know little about how effective these algorithms are against human players. Using a simplified security game, we study the type of attack strategy and the uncertainty about an attacker's strategy in a laboratory experiment where participants play the role of defenders against a simulated attacker. Our goal is to compare a human defender's behavior in three levels of uncertainty (Information Level: Certain, Risky, Uncertain) and three types of attacker's strategy (Attacker's strategy: Minimax, Random, Adaptive) in a between-subjects experimental design. Best defense performance is achieved when defenders play against a minimax and a random attack strategy compared to an adaptive strategy. Furthermore, when payoffs are certain, defenders are as efficient against random attack strategy as they are against an adaptive strategy, but when payoffs are uncertain, defenders have most difficulties defending against an adaptive attacker compared to a random attacker. We conclude that given conditions of uncertainty in many security problems, defense algorithms would be more efficient if they are adaptive to the attacker actions, taking advantage of the attacker's human inefficiencies.

Suggested Citation

  • Frederic Moisan & Cleotilde Gonzalez, 2017. "Security under Uncertainty : Adaptive Attackers Are More Challenging to Human Defenders than Random Attackers," Post-Print hal-03188217, HAL.
  • Handle: RePEc:hal:journl:hal-03188217
    Note: View the original document on HAL open archive server: https://hal.science/hal-03188217v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03188217v1/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shachat, Jason & Swarthout, J. Todd, 2012. "Learning about learning in games through experimental control of strategic interdependence," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 383-402.
    2. Spiliopoulos, Leonidas, 2008. "Humans versus computer algorithms in repeated mixed strategy games," MPRA Paper 6672, University Library of Munich, Germany.
    3. Manish Jain & Jason Tsai & James Pita & Christopher Kiekintveld & Shyamsunder Rathi & Milind Tambe & Fernando Ordóñez, 2010. "Software Assistants for Randomized Patrol Planning for the LAX Airport Police and the Federal Air Marshal Service," Interfaces, INFORMS, vol. 40(4), pages 267-290, August.
    4. Jason Shachat & J. Todd Swarthout, 2004. "Do we detect and exploit mixed strategy play by opponents?," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(3), pages 359-373, July.
    5. Yoella Bereby-Meyer & Alvin E. Roth, 2006. "The Speed of Learning in Noisy Games: Partial Reinforcement and the Sustainability of Cooperation," American Economic Review, American Economic Association, vol. 96(4), pages 1029-1042, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. March, Christoph, 2021. "Strategic interactions between humans and artificial intelligence: Lessons from experiments with computer players," Journal of Economic Psychology, Elsevier, vol. 87(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:wyi:journl:002151 is not listed on IDEAS
    2. Jason Shachat & J. Todd Swarthout & Lijia Wei, 2011. "Man versus Nash An experiment on the self-enforcing nature of mixed strategy equilibrium," Working Papers 1101, Xiamen Unversity, The Wang Yanan Institute for Studies in Economics, Finance and Economics Experimental Laboratory, revised 21 Feb 2011.
    3. Sean Duffy & J. J. Naddeo & David Owens & John Smith, 2024. "Cognitive Load and Mixed Strategies: On Brains and Minimax," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 26(03), pages 1-34, September.
    4. Shachat, Jason & Swarthout, J. Todd, 2012. "Learning about learning in games through experimental control of strategic interdependence," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 383-402.
    5. Spiliopoulos, Leonidas, 2008. "Humans versus computer algorithms in repeated mixed strategy games," MPRA Paper 6672, University Library of Munich, Germany.
    6. Ido Erev & Alvin E. Roth & Robert Slonim, 2016. "Minimax across a population of games," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 2(2), pages 144-156, November.
    7. March, Christoph, 2021. "Strategic interactions between humans and artificial intelligence: Lessons from experiments with computer players," Journal of Economic Psychology, Elsevier, vol. 87(C).
    8. Spiliopoulos, Leonidas, 2008. "Do repeated game players detect patterns in opponents? Revisiting the Nyarko & Schotter belief elicitation experiment," MPRA Paper 6666, University Library of Munich, Germany.
    9. Ronald Peeters & Leonard Wolk, 2017. "Eliciting interval beliefs: An experimental study," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-15, April.
    10. Emara, Noha & Owens, David & Smith, John & Wilmer, Lisa, 2017. "Serial correlation in National Football League play calling and its effects on outcomes," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 69(C), pages 125-132.
    11. Florian Diekert & Tillmann Eymess & Joseph Luomba & Israel Waichman, 2022. "The Creation of Social Norms under Weak Institutions," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 9(6), pages 1127-1160.
    12. Alcocer, Christian Diego & Jeitschko, Thomas D. & Shupp, Robert, 2020. "Naive and sophisticated mixing: Experimental evidence," Journal of Economic Behavior & Organization, Elsevier, vol. 170(C), pages 157-173.
    13. Beck, Yasmine & Ljubić, Ivana & Schmidt, Martin, 2023. "A survey on bilevel optimization under uncertainty," European Journal of Operational Research, Elsevier, vol. 311(2), pages 401-426.
    14. Daley, Brendan & Sadowski, Philipp, 2017. "Magical thinking: A representation result," Theoretical Economics, Econometric Society, vol. 12(2), May.
    15. Ghidoni, Riccardo & Calzolari, Giacomo & Casari, Marco, 2017. "Climate change: Behavioral responses from extreme events and delayed damages," Energy Economics, Elsevier, vol. 68(S1), pages 103-115.
    16. Dai, Zhixin & Hogarth, Robin M. & Villeval, Marie Claire, 2015. "Ambiguity on audits and cooperation in a public goods game," European Economic Review, Elsevier, vol. 74(C), pages 146-162.
    17. Martin Brown & Jan Schmitz & Christian Zehnder, 2023. "Moral Constraints, Social Norm Enforcement and Strategic Default in Weak and Strong Economic Conditions," Working Papers 23.03, Swiss National Bank, Study Center Gerzensee.
    18. Pedro Dal Bo & Andrew Foster & Louis Putterman, 2010. "Institutions and Behavior: Experimental Evidence on the Effects of Democracy," American Economic Review, American Economic Association, vol. 100(5), pages 2205-2229, December.
    19. Dürsch, Peter & Kolb, Albert & Oechssler, Jörg & Schipper, Burkhard C., 2005. "Rage Against the Machines: How Subjects Learn to Play Against Computers," Discussion Paper Series of SFB/TR 15 Governance and the Efficiency of Economic Systems 63, Free University of Berlin, Humboldt University of Berlin, University of Bonn, University of Mannheim, University of Munich.
    20. Spiliopoulos, Leonidas, 2012. "Pattern recognition and subjective belief learning in a repeated constant-sum game," Games and Economic Behavior, Elsevier, vol. 75(2), pages 921-935.
    21. Jensen, Martin Kaae & Kozlovskaya, Maria, 2016. "A representation theorem for guilt aversion," Journal of Economic Behavior & Organization, Elsevier, vol. 125(C), pages 148-161.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03188217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.