IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03160685.html
   My bibliography  Save this paper

A complex networks based analysis of jump risk in equity returns: An evidence using intraday movements from Pakistan stock market

Author

Listed:
  • Faheem Aslam

    (CUI - COMSATS University Islamabad)

  • Yasir Tariq Mohmand

    (CUI - COMSATS University Islamabad)

  • Saqib Aziz

    (ESC [Rennes] - ESC Rennes School of Business)

  • Jamal Ouenniche

    (Edin. - University of Edinburgh)

Abstract

We employ a multi-stage methodology combining complex network analytics and financial risk modelling to unveil the correlation structures amongst the price jump risks of companies forming the KSE-100 index in Pakistan. We identify the most influential companies in terms of jump risk, and identify communities — clusters of companies with similar price movement characteristics or with highly correlated price jumps. We find that equities in Pakistan stock market experience jumps in different time periods that are correlated to varying degrees within and across industries resulting in 19 different communities, four of which are strongly connected. While Oil & Gas, Cement and Banking sectors exhibit a significant representation of firms in communities, the automobile industry, however, seems to play an important role in risk propagation. These results provide an interesting insight to investors and other stakeholders from an emerging market viewpoint identifying the major sectors driving the volatility of KSE-100 index.

Suggested Citation

  • Faheem Aslam & Yasir Tariq Mohmand & Saqib Aziz & Jamal Ouenniche, 2020. "A complex networks based analysis of jump risk in equity returns: An evidence using intraday movements from Pakistan stock market," Post-Print hal-03160685, HAL.
  • Handle: RePEc:hal:journl:hal-03160685
    DOI: 10.1016/j.jbef.2020.100418
    Note: View the original document on HAL open archive server: https://rennes-sb.hal.science/hal-03160685
    as

    Download full text from publisher

    File URL: https://rennes-sb.hal.science/hal-03160685/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jbef.2020.100418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert Engle, 2002. "New frontiers for arch models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 425-446.
    2. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    3. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    4. R. Mantegna, 1999. "Hierarchical structure in financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 11(1), pages 193-197, September.
    5. Andersen, Torben G. & Bollerslev, Tim & Huang, Xin, 2011. "A reduced form framework for modeling volatility of speculative prices based on realized variation measures," Journal of Econometrics, Elsevier, vol. 160(1), pages 176-189, January.
    6. Jorion, Philippe & Giovannini, Alberto, 1993. "Time-series tests of a non-expected-utility model of asset pricing," European Economic Review, Elsevier, vol. 37(5), pages 1083-1100, June.
    7. Philipp J. Kremer & Andreea Talmaciu & Sandra Paterlini, 2018. "Risk minimization in multi-factor portfolios: What is the best strategy?," Annals of Operations Research, Springer, vol. 266(1), pages 255-291, July.
    8. Driessen, Joost & Maenhout, Pascal, 2013. "The world price of jump and volatility risk," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 518-536.
    9. repec:bla:jfinan:v:59:y:2004:i:3:p:1367-1404 is not listed on IDEAS
    10. Andersen, Torben G. & Bollerslev, Tim & Dobrev, Dobrislav, 2007. "No-arbitrage semi-martingale restrictions for continuous-time volatility models subject to leverage effects, jumps and i.i.d. noise: Theory and testable distributional implications," Journal of Econometrics, Elsevier, vol. 138(1), pages 125-180, May.
    11. Martijn Cremers & Michael Halling & David Weinbaum, 2015. "Aggregate Jump and Volatility Risk in the Cross-Section of Stock Returns," Journal of Finance, American Finance Association, vol. 70(2), pages 577-614, April.
    12. Andrea Lancichinetti & Filippo Radicchi & José J Ramasco & Santo Fortunato, 2011. "Finding Statistically Significant Communities in Networks," PLOS ONE, Public Library of Science, vol. 6(4), pages 1-18, April.
    13. Waltman, Ludo & van Eck, Nees Jan & Noyons, Ed C.M., 2010. "A unified approach to mapping and clustering of bibliometric networks," Journal of Informetrics, Elsevier, vol. 4(4), pages 629-635.
    14. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aslam, Faheem & Mohmand, Yasir Tariq & Aziz, Saqib & Ouenniche, Jamal, 2020. "A complex networks based analysis of jump risk in equity returns: An evidence using intraday movements from Pakistan stock market," Journal of Behavioral and Experimental Finance, Elsevier, vol. 28(C).
    2. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    3. Deniz Erdemlioglu & Sébastien Laurent & Christopher J. Neely, 2013. "Econometric modeling of exchange rate volatility and jumps," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 16, pages 373-427, Edward Elgar Publishing.
    4. Palandri, Alessandro, 2015. "Do negative and positive equity returns share the same volatility dynamics?," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 486-505.
    5. Harry Vander Elst, 2015. "FloGARCH : Realizing long memory and asymmetries in returns volatility," Working Paper Research 280, National Bank of Belgium.
    6. Chevallier, Julien & Sévi, Benoît, 2012. "On the volatility–volume relationship in energy futures markets using intraday data," Energy Economics, Elsevier, vol. 34(6), pages 1896-1909.
    7. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2013. "Financial Risk Measurement for Financial Risk Management," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1127-1220, Elsevier.
    8. Lena Cleanthous & Pany Karamanou, 2011. "The ECB Monetary Policy and the Current Financial Crisis," Working Papers 2011-1, Central Bank of Cyprus.
    9. Donggyu Kim & Minseok Shin & Yazhen Wang, 2023. "Overnight GARCH-Itô Volatility Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 41(4), pages 1215-1227, October.
    10. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    11. Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2020. "Do Bitcoin and other cryptocurrencies jump together?," The Quarterly Review of Economics and Finance, Elsevier, vol. 76(C), pages 396-409.
    12. Han, Seung-Oh & Huh, Sahn-Wook & Park, Jeayoung, 2023. "Detecting jumps amidst prevalent zero returns: Evidence from the U.S. Treasury securities," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 276-307.
    13. Masato Ubukata & Toshiaki Watanabe, 2013. "Pricing Nikkei 225 Options Using Realized Volatility," Global COE Hi-Stat Discussion Paper Series gd12-273, Institute of Economic Research, Hitotsubashi University.
    14. Huang, Chuangxia & Zhao, Xian & Deng, Yunke & Yang, Xiaoguang & Yang, Xin, 2022. "Evaluating influential nodes for the Chinese energy stocks based on jump volatility spillover network," International Review of Economics & Finance, Elsevier, vol. 78(C), pages 81-94.
    15. Lyócsa, Štefan & Molnár, Peter & Výrost, Tomáš, 2021. "Stock market volatility forecasting: Do we need high-frequency data?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1092-1110.
    16. Svetlana Borovkova & Diego Mahakena, 2015. "News, volatility and jumps: the case of natural gas futures," Quantitative Finance, Taylor & Francis Journals, vol. 15(7), pages 1217-1242, July.
    17. Gong, Xu & Lin, Boqiang, 2019. "Modeling stock market volatility using new HAR-type models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 516(C), pages 194-211.
    18. Masato Ubukata & Toshiaki Watanabe, 2014. "Pricing Nikkei 225 Options Using Realized Volatility," The Japanese Economic Review, Japanese Economic Association, vol. 65(4), pages 431-467, December.
    19. Olusanya E. Olubusoye & OlaOluwa S. Yaya, 2016. "Time series analysis of volatility in the petroleum pricing markets: the persistence, asymmetry and jumps in the returns series," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 40(3), pages 235-262, September.
    20. Jiang, Wei & Ruan, Qingsong & Li, Jianfeng & Li, Ye, 2018. "Modeling returns volatility: Realized GARCH incorporating realized risk measure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 500(C), pages 249-258.

    More about this item

    Keywords

    Complex network analysis; Intraday returns; Realised jumps; Realised volatility; Jump risk;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03160685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.