History-Augmented Collaborative Filtering for Financial Recommendations
Author
Abstract
Suggested Citation
DOI: 10.1145/3383313.3412206
Note: View the original document on HAL open archive server: https://hal.science/hal-03144669
Download full text from publisher
References listed on IDEAS
- Yann LeCun & Yoshua Bengio & Geoffrey Hinton, 2015. "Deep learning," Nature, Nature, vol. 521(7553), pages 436-444, May.
- Wright, Dominic & Capriotti, Luca & Lee, Jacky, 2018. "Machine learning and corporate bond trading," Algorithmic Finance, IOS Press, vol. 7(3-4), pages 105-110.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Song & Qiu, Yongqin & Li, Jingmao & Fang, Kan & Fang, Kuangnan, 2023. "Precision marketing for financial industry using a PU-learning recommendation method," Journal of Business Research, Elsevier, vol. 160(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Baptiste Barreau & Laurent Carlier, 2021. "History-Augmented Collaborative Filtering for Financial Recommendations," Papers 2102.13503, arXiv.org.
- Qiang Zhang & Rui Luo & Yaodong Yang & Yuanyuan Liu, 2018. "Benchmarking Deep Sequential Models on Volatility Predictions for Financial Time Series," Papers 1811.03711, arXiv.org.
- Crane-Droesch, Andrew, 2017. "Semiparametric Panel Data Using Neural Networks," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258128, Agricultural and Applied Economics Association.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2022.
"Urban economics in a historical perspective: Recovering data with machine learning,"
Regional Science and Urban Economics, Elsevier, vol. 94(C).
- Gobillon, Laurent & Combes, Pierre-Philippe & Zylberberg, Yanos, 2020. "Urban economics in a historical perspective: Recovering data with machine learning," CEPR Discussion Papers 15308, C.E.P.R. Discussion Papers.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," PSE Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," PSE-Ecole d'économie de Paris (Postprint) halshs-03673240, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2021. "Urban economics in a historical perspective: Recovering data with machine learning," Working Papers halshs-03231786, HAL.
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," Post-Print halshs-03673240, HAL.
- Combes, Pierre-Philippe & Gobillon, Laurent & Zylberberg, Yanos, 2021. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," IZA Discussion Papers 14392, Institute of Labor Economics (IZA).
- Pierre-Philippe Combes & Laurent Gobillon & Yanos Zylberberg, 2022. "Urban Economics in a Historical Perspective: Recovering Data with Machine Learning," SciencePo Working papers Main halshs-03673240, HAL.
- Tan, Zhixue & Zhong, Shisheng & Lin, Lin, 2019. "Trans-layer model learning: A hierarchical modeling strategy for real-time reliability evaluation of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 120-132.
- Ariel Navon & Yosi Keller, 2017. "Financial Time Series Prediction Using Deep Learning," Papers 1711.04174, arXiv.org.
- Shigeyuki Hamori & Takahiro Kume, 2018. "Artificial Intelligence And Economic Growth," Advances in Decision Sciences, Asia University, Taiwan, vol. 22(1), pages 256-278, December.
- Omer Berat Sezer & Mehmet Ugur Gudelek & Ahmet Murat Ozbayoglu, 2019. "Financial Time Series Forecasting with Deep Learning : A Systematic Literature Review: 2005-2019," Papers 1911.13288, arXiv.org.
- Nanne, Annemarie J. & Antheunis, Marjolijn L. & van der Lee, Chris G. & Postma, Eric O. & Wubben, Sander & van Noort, Guda, 2020. "The Use of Computer Vision to Analyze Brand-Related User Generated Image Content," Journal of Interactive Marketing, Elsevier, vol. 50(C), pages 156-167.
- Changran He & Guoye Wang & Zhangpeng Gong & Zhichao Xing & Dongxin Xu, 2018. "A Control Algorithm for the Novel Regenerative–Mechanical Coupled Brake System with by-Wire Based on Multidisciplinary Design Optimization for an Electric Vehicle," Energies, MDPI, vol. 11(9), pages 1-18, September.
- Hannes Mueller & André Groeger & Jonathan Hersh & Andrea Matranga & Joan Serrat, 2021. "Monitoring War Destruction from Space Using Machine Learning," Working Papers 1257, Barcelona School of Economics.
- Nikolaos Passalis & Anastasios Tefas & Juho Kanniainen & Moncef Gabbouj & Alexandros Iosifidis, 2019. "Temporal Logistic Neural Bag-of-Features for Financial Time series Forecasting leveraging Limit Order Book Data," Papers 1901.08280, arXiv.org.
- Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
- Shuaiqiang Liu & Lech A. Grzelak & Cornelis W. Oosterlee, 2022.
"The Seven-League Scheme: Deep Learning for Large Time Step Monte Carlo Simulations of Stochastic Differential Equations,"
Risks, MDPI, vol. 10(3), pages 1-27, February.
- Shuaiqiang Liu & Lech A. Grzelak & Cornelis W. Oosterlee, 2020. "The Seven-League Scheme: Deep learning for large time step Monte Carlo simulations of stochastic differential equations," Papers 2009.03202, arXiv.org, revised Sep 2021.
- Hoon Lee & Han Seung Jang & Bang Chul Jung, 2019. "Improving Energy Efficiency Fairness of Wireless Networks: A Deep Learning Approach," Energies, MDPI, vol. 12(22), pages 1-18, November.
- Huang, Qian & Li, Jinghua & Zhu, Mengshu, 2020. "An improved convolutional neural network with load range discretization for probabilistic load forecasting," Energy, Elsevier, vol. 203(C).
- Zihao Zhang & Stefan Zohren & Stephen Roberts, 2020. "Deep Learning for Portfolio Optimization," Papers 2005.13665, arXiv.org, revised Jan 2021.
- Anping Song & Zuoyu Wu & Xuehai Ding & Qian Hu & Xinyi Di, 2018. "Neurologist Standard Classification of Facial Nerve Paralysis with Deep Neural Networks," Future Internet, MDPI, vol. 10(11), pages 1-13, November.
- Hannes Mueller & Andre Groger & Jonathan Hersh & Andrea Matranga & Joan Serrat, 2020. "Monitoring War Destruction from Space: A Machine Learning Approach," Papers 2010.05970, arXiv.org, revised Oct 2020.
- Wang, Shenhao & Wang, Qingyi & Zhao, Jinhua, 2020. "Multitask learning deep neural networks to combine revealed and stated preference data," Journal of choice modelling, Elsevier, vol. 37(C).
More about this item
Keywords
matrix factorization; collaborative filtering; context-aware; time; neural networks;All these keywords.
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2021-03-15 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03144669. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.