IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-03123998.html
   My bibliography  Save this paper

EISAI: Ethical Information System based on Artificial Intelligence

Author

Listed:
  • Saïd Assar

    (IMT-BS - TIM - Département Technologies, Information & Management - TEM - Télécom Ecole de Management - IMT - Institut Mines-Télécom [Paris] - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris], LITEM - Laboratoire en Innovation, Technologies, Economie et Management (EA 7363) - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris])

  • Christine Balagué

    (CONNECT - Consommateur Connecté dans la Société Numérique - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris], IMT-BS - MMS - Département Management, Marketing et Stratégie - TEM - Télécom Ecole de Management - IMT - Institut Mines-Télécom [Paris] - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris], LITEM - Laboratoire en Innovation, Technologies, Economie et Management (EA 7363) - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris])

  • Loréa Baïada-Hirèche

    (IMT-BS - MMS - Département Management, Marketing et Stratégie - TEM - Télécom Ecole de Management - IMT - Institut Mines-Télécom [Paris] - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris], LITEM - Laboratoire en Innovation, Technologies, Economie et Management (EA 7363) - UEVE - Université d'Évry-Val-d'Essonne - Université Paris-Saclay - IMT-BS - Institut Mines-Télécom Business School - IMT - Institut Mines-Télécom [Paris])

Abstract

No abstract is available for this item.

Suggested Citation

  • Saïd Assar & Christine Balagué & Loréa Baïada-Hirèche, 2020. "EISAI: Ethical Information System based on Artificial Intelligence," Post-Print hal-03123998, HAL.
  • Handle: RePEc:hal:journl:hal-03123998
    Note: View the original document on HAL open archive server: https://hal.science/hal-03123998v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-03123998v1/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Aurélie Leclercq-Vandelannoitte, 2017. "An Ethical Perspective on Emerging Forms of Ubiquitous IT-Based Control," Journal of Business Ethics, Springer, vol. 142(1), pages 139-154, April.
    2. Vidgen, Richard & Shaw, Sarah & Grant, David B., 2017. "Management challenges in creating value from business analytics," European Journal of Operational Research, Elsevier, vol. 261(2), pages 626-639.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tabesh, Pooya & Mousavidin, Elham & Hasani, Sona, 2019. "Implementing big data strategies: A managerial perspective," Business Horizons, Elsevier, vol. 62(3), pages 347-358.
    2. Alina Köchling & Marius Claus Wehner, 2020. "Discriminated by an algorithm: a systematic review of discrimination and fairness by algorithmic decision-making in the context of HR recruitment and HR development," Business Research, Springer;German Academic Association for Business Research, vol. 13(3), pages 795-848, November.
    3. Zhan, Yuanzhu & Tan, Kim Hua, 2020. "An analytic infrastructure for harvesting big data to enhance supply chain performance," European Journal of Operational Research, Elsevier, vol. 281(3), pages 559-574.
    4. Roßmann, Bernhard & Canzaniello, Angelo & von der Gracht, Heiko & Hartmann, Evi, 2018. "The future and social impact of Big Data Analytics in Supply Chain Management: Results from a Delphi study," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 135-149.
    5. Morimura, Fumikazu & Sakagawa, Yuji, 2023. "The intermediating role of big data analytics capability between responsive and proactive market orientations and firm performance in the retail industry," Journal of Retailing and Consumer Services, Elsevier, vol. 71(C).
    6. Vinicius Luiz Ferraz Minatogawa & Matheus Munhoz Vieira Franco & Izabela Simon Rampasso & Rosley Anholon & Ruy Quadros & Orlando Durán & Antonio Batocchio, 2019. "Operationalizing Business Model Innovation through Big Data Analytics for Sustainable Organizations," Sustainability, MDPI, vol. 12(1), pages 1-29, December.
    7. Patrick Mikalef & Ilias O. Pappas & John Krogstie & Michail Giannakos, 2018. "Big data analytics capabilities: a systematic literature review and research agenda," Information Systems and e-Business Management, Springer, vol. 16(3), pages 547-578, August.
    8. Brinch, Morten & Gunasekaran, Angappa & Fosso Wamba, Samuel, 2021. "Firm-level capabilities towards big data value creation," Journal of Business Research, Elsevier, vol. 131(C), pages 539-548.
    9. Manish Shashi, 2023. "Sustainable Digitalization in Pharmaceutical Supply Chains Using Theory of Constraints: A Qualitative Study," Sustainability, MDPI, vol. 15(11), pages 1-18, May.
    10. Sanjay Kumar Tyagi & Sujeet Kumar Sharma & R. Krishankumar & K. S. Ravichandran, 2022. "An extension of interpretive structural modeling using linguistic term sets for business decision-making," OPSEARCH, Springer;Operational Research Society of India, vol. 59(3), pages 1158-1177, September.
    11. Schoenherr, Tobias, 2023. "Supply chain management professionals’ proficiency in big data analytics: Antecedents and impact on performance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    12. Chotia, Varun & Cheng, Yue & Agarwal, Reeti & Vishnoi, Sushant Kumar, 2024. "AI-enabled Green Business Strategy: Path to carbon neutrality via environmental performance and green process innovation," Technological Forecasting and Social Change, Elsevier, vol. 202(C).
    13. Pan, Qiaohong & Luo, Wenping & Fu, Yi, 2022. "A csQCA study of value creation in logistics collaboration by big data: A perspective from companies in China," Technology in Society, Elsevier, vol. 71(C).
    14. Kristoffersen, Eivind & Mikalef, Patrick & Blomsma, Fenna & Li, Jingyue, 2021. "Towards a business analytics capability for the circular economy," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    15. Kim, Jaemin & Dibrell, Clay & Kraft, Ellen & Marshall, David, 2021. "Data analytics and performance: The moderating role of intuition-based HR management in major league baseball," Journal of Business Research, Elsevier, vol. 122(C), pages 204-216.
    16. Božič, Katerina & Dimovski, Vlado, 2019. "Business intelligence and analytics for value creation: The role of absorptive capacity," International Journal of Information Management, Elsevier, vol. 46(C), pages 93-103.
    17. Efpraxia D. Zamani & Conn Smyth & Samrat Gupta & Denis Dennehy, 2023. "Artificial intelligence and big data analytics for supply chain resilience: a systematic literature review," Annals of Operations Research, Springer, vol. 327(2), pages 605-632, August.
    18. De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
    19. Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
    20. Marcin Relich, 2023. "Predictive and Prescriptive Analytics in Identifying Opportunities for Improving Sustainable Manufacturing," Sustainability, MDPI, vol. 15(9), pages 1-14, May.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-03123998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.