IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v261y2017i2p626-639.html
   My bibliography  Save this article

Management challenges in creating value from business analytics

Author

Listed:
  • Vidgen, Richard
  • Shaw, Sarah
  • Grant, David B.

Abstract

The popularity of big data and business analytics has increased tremendously in the last decade and a key challenge for organizations is in understanding how to leverage them to create business value. However, while the literature acknowledges the importance of these topics little work has addressed them from the organization's point of view. This paper investigates the challenges faced by organizational managers seeking to become more data and information-driven in order to create value. Empirical research comprised a mixed methods approach using (1) a Delphi study with practitioners through various forums and (2) interviews with business analytics managers in three case organizations. The case studies reinforced the Delphi findings and highlighted several challenge focal areas: organizations need a clear data and analytics strategy, the right people to effect a data-driven cultural change, and to consider data and information ethics when using data for competitive advantage. Further, becoming data-driven is not merely a technical issue and demands that organizations firstly organize their business analytics departments to comprise business analysts, data scientists, and IT personnel, and secondly align that business analytics capability with their business strategy in order to tackle the analytics challenge in a systemic and joined-up way. As a result, this paper presents a business analytics ecosystem for organizations that contributes to the body of scholarly knowledge by identifying key business areas and functions to address to achieve this transformation.

Suggested Citation

  • Vidgen, Richard & Shaw, Sarah & Grant, David B., 2017. "Management challenges in creating value from business analytics," European Journal of Operational Research, Elsevier, vol. 261(2), pages 626-639.
  • Handle: RePEc:eee:ejores:v:261:y:2017:i:2:p:626-639
    DOI: 10.1016/j.ejor.2017.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221717301455
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2017.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Gang & Gunasekaran, Angappa & Ngai, Eric W.T. & Papadopoulos, Thanos, 2016. "Big data analytics in logistics and supply chain management: Certain investigations for research and applications," International Journal of Production Economics, Elsevier, vol. 176(C), pages 98-110.
    2. Richard Vidgen & Xiaofeng Wang, 2009. "Coevolving Systems and the Organization of Agile Software Development," Information Systems Research, INFORMS, vol. 20(3), pages 355-376, September.
    3. Ranyard, J.C. & Fildes, R. & Hu, Tun-I, 2015. "Reassessing the scope of OR practice: The Influences of Problem Structuring Methods and the Analytics Movement," European Journal of Operational Research, Elsevier, vol. 245(1), pages 1-13.
    4. Akkermans, Henk A. & Bogerd, Paul & Yucesan, Enver & van Wassenhove, Luk N., 2003. "The impact of ERP on supply chain management: Exploratory findings from a European Delphi study," European Journal of Operational Research, Elsevier, vol. 146(2), pages 284-301, April.
    5. von der Gracht, Heiko A., 2012. "Consensus measurement in Delphi studies," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1525-1536.
    6. Hazen, Benjamin T. & Boone, Christopher A. & Ezell, Jeremy D. & Jones-Farmer, L. Allison, 2014. "Data quality for data science, predictive analytics, and big data in supply chain management: An introduction to the problem and suggestions for research and applications," International Journal of Production Economics, Elsevier, vol. 154(C), pages 72-80.
    7. Stephen J. W. Evans, 2016. "What Is the Plural of a ‘Yellow’ Anecdote?," Drug Safety, Springer, vol. 39(1), pages 1-3, January.
    8. Mortenson, Michael J. & Doherty, Neil F. & Robinson, Stewart, 2015. "Operational research from Taylorism to Terabytes: A research agenda for the analytics age," European Journal of Operational Research, Elsevier, vol. 241(3), pages 583-595.
    9. Pape, Tom, 2016. "Prioritising data items for business analytics: Framework and application to human resources," European Journal of Operational Research, Elsevier, vol. 252(2), pages 687-698.
    10. Norman Dalkey & Olaf Helmer, 1963. "An Experimental Application of the DELPHI Method to the Use of Experts," Management Science, INFORMS, vol. 9(3), pages 458-467, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoph Markmann & Alexander Spickermann & Heiko A. von der Gracht & Alexander Brem, 2021. "Improving the question formulation in Delphi‐like surveys: Analysis of the effects of abstract language and amount of information on response behavior," Futures & Foresight Science, John Wiley & Sons, vol. 3(1), March.
    2. Zhan, Yuanzhu & Tan, Kim Hua, 2020. "An analytic infrastructure for harvesting big data to enhance supply chain performance," European Journal of Operational Research, Elsevier, vol. 281(3), pages 559-574.
    3. Brinch, Morten & Gunasekaran, Angappa & Fosso Wamba, Samuel, 2021. "Firm-level capabilities towards big data value creation," Journal of Business Research, Elsevier, vol. 131(C), pages 539-548.
    4. Arunachalam, Deepak & Kumar, Niraj & Kawalek, John Paul, 2018. "Understanding big data analytics capabilities in supply chain management: Unravelling the issues, challenges and implications for practice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 416-436.
    5. Sheng, Jie & Amankwah-Amoah, Joseph & Wang, Xiaojun, 2017. "A multidisciplinary perspective of big data in management research," International Journal of Production Economics, Elsevier, vol. 191(C), pages 97-112.
    6. Duan, Yanqing & Cao, Guangming & Edwards, John S., 2020. "Understanding the impact of business analytics on innovation," European Journal of Operational Research, Elsevier, vol. 281(3), pages 673-686.
    7. Osman, Ibrahim H. & Anouze, Abdel Latef & Irani, Zahir & Lee, Habin & Medeni, Tunç D. & Weerakkody, Vishanth, 2019. "A cognitive analytics management framework for the transformation of electronic government services from users’ perspective to create sustainable shared values," European Journal of Operational Research, Elsevier, vol. 278(2), pages 514-532.
    8. Burger, Katharina & White, Leroy & Yearworth, Mike, 2019. "Developing a smart operational research with hybrid practice theories," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1137-1150.
    9. Peppel, Marcel & Ringbeck, Jürgen & Spinler, Stefan, 2022. "How will last-mile delivery be shaped in 2040? A Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    10. Hindle, Giles A. & Vidgen, Richard, 2018. "Developing a business analytics methodology: A case study in the foodbank sector," European Journal of Operational Research, Elsevier, vol. 268(3), pages 836-851.
    11. Bokrantz, Jon & Skoogh, Anders & Berlin, Cecilia & Stahre, Johan, 2017. "Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030," International Journal of Production Economics, Elsevier, vol. 191(C), pages 154-169.
    12. Prianto Budi Saptono & Gustofan Mahmud & Intan Pratiwi & Dwi Purwanto & Ismail Khozen & Muhamad Akbar Aditama & Siti Khodijah & Maria Eurelia Wayan & Rina Yuliastuty Asmara & Ferry Jie, 2023. "Development of Climate-Related Disclosure Indicators for Application in Indonesia: A Delphi Method Study," Sustainability, MDPI, vol. 15(14), pages 1-25, July.
    13. Nibedita Mukherjee & Jean Huge & Farid Dahdouh-Guebas & Nico Koedam, 2014. "Ecosystem service valuations of mangrove ecosystems to inform decision making and future valuation exercises," ULB Institutional Repository 2013/217963, ULB -- Universite Libre de Bruxelles.
    14. Di Zio, Simone & Bolzan, Mario & Marozzi, Marco, 2021. "Classification of Delphi outputs through robust ranking and fuzzy clustering for Delphi-based scenarios," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    15. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    16. Petreski Marjan & Petreski Blagica & Tumanoska Despina & Narazani Edlira & Kazazi Fatush & Ognjanov Galjina & Jankovic Irena & Mustafa Arben & Kochovska Tereza, 2017. "The Size and Effects of Emigration and Remittances in the Western Balkans. A Forecasting Based on a Delphi Process," Comparative Southeast European Studies, De Gruyter, vol. 65(4), pages 679-695, December.
    17. Benjamin T. Hazen & Joseph B. Skipper & Christopher A. Boone & Raymond R. Hill, 2018. "Back in business: operations research in support of big data analytics for operations and supply chain management," Annals of Operations Research, Springer, vol. 270(1), pages 201-211, November.
    18. Johannes I. F. Henning & Henry Jordaan, 2016. "Determinants of Financial Sustainability for Farm Credit Applications—A Delphi Study," Sustainability, MDPI, vol. 8(1), pages 1-15, January.
    19. Bin Shen & Hau-Ling Chan, 2017. "Forecast Information Sharing for Managing Supply Chains in the Big Data Era: Recent Development and Future Research," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(01), pages 1-26, February.
    20. Sobrie, Léon & Verschelde, Marijn & Hennebel, Veerle & Roets, Bart, 2023. "Capturing complexity over space and time via deep learning: An application to real-time delay prediction in railways," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1201-1217.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:261:y:2017:i:2:p:626-639. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.