IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02572114.html
   My bibliography  Save this paper

Maximizing the expected net present value of a project with phase-type distributed activity durations: An efficient globally optimal solution procedure

Author

Listed:
  • Stefan Creemers

    (LEM - Lille économie management - UMR 9221 - UA - Université d'Artois - UCL - Université catholique de Lille - Université de Lille - CNRS - Centre National de la Recherche Scientifique)

Abstract

We study projects with activities that have stochastic durations that are modeled using phase-type distributions. Intermediate cash flows are incurred during the execution of the project. Upon completion of all project activities a payoff is obtained. Because activity durations are stochastic, activity starting times cannot be defined at the start of the project. Instead, we have to rely on a policy to schedule activities during the execution of the project. The optimal policy schedules activities such that the expected net present value of the project is maximized. We determine the optimal policy using a new continuous-time Markov chain and a backward stochastic dynamic program. Although the new continuous-time Markov chain allows to drastically reduce memory requirements (when compared to existing methods), it also allows activities to be preempted; an assumption that is not always desirable. We prove, however, that it is globally optimal not to preempt activities if cash flows are incurred at the start of an activity. Moreover, this proof holds regardless of the duration distribution of the activities. A computational experiment shows that we significantly outperform current state-of-the-art procedures. On average, we improve computational efficiency by a factor of 600, and reduce memory requirements by a factor of 321.

Suggested Citation

  • Stefan Creemers, 2018. "Maximizing the expected net present value of a project with phase-type distributed activity durations: An efficient globally optimal solution procedure," Post-Print hal-02572114, HAL.
  • Handle: RePEc:hal:journl:hal-02572114
    DOI: 10.1016/j.ejor.2017.11.027
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peymankar, Mahboobeh & Davari, Morteza & Ranjbar, Mohammad, 2021. "Maximizing the expected net present value in a project with uncertain cash flows," European Journal of Operational Research, Elsevier, vol. 294(2), pages 442-452.
    2. Rostami, Salim & Creemers, Stefan & Leus, Roel, 2024. "Maximizing the net present value of a project under uncertainty: Activity delays and dynamic policies," European Journal of Operational Research, Elsevier, vol. 317(1), pages 16-24.
    3. Bruni, Maria Elena & Hazır, Öncü, 2024. "A risk-averse distributionally robust project scheduling model to address payment delays," European Journal of Operational Research, Elsevier, vol. 318(2), pages 398-407.
    4. Hazır, Öncü & Ulusoy, Gündüz, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," International Journal of Production Economics, Elsevier, vol. 223(C).
    5. Fatemeh Rezaei & Amir Abbas Najafi & Erik Demeulemeester & Reza Ramezanian, 2024. "A stochastic bi-objective project scheduling model under failure of activities," Annals of Operations Research, Springer, vol. 338(1), pages 453-476, July.
    6. Öncü Hazir & Gündüz Ulusoy, 2020. "A classification and review of approaches and methods for modeling uncertainty in projects," Post-Print hal-02898162, HAL.
    7. Alessio Angius & András Horváth & Marcello Urgo, 2021. "A Kronecker Algebra Formulation for Markov Activity Networks with Phase-Type Distributions," Mathematics, MDPI, vol. 9(12), pages 1-22, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02572114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.