IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02497137.html
   My bibliography  Save this paper

A new fusion of salp swarm with sine cosine for optimization of non-linear functions

Author

Listed:
  • Narinder Singh

    (RGU - RGU)

  • Le Hoang Son
  • Francisco Chiclana
  • Jean-Pierre Magnot

    (LAREMA - Laboratoire Angevin de Recherche en Mathématiques - UA - Université d'Angers - CNRS - Centre National de la Recherche Scientifique)

Abstract

No abstract is available for this item.

Suggested Citation

  • Narinder Singh & Le Hoang Son & Francisco Chiclana & Jean-Pierre Magnot, 2020. "A new fusion of salp swarm with sine cosine for optimization of non-linear functions," Post-Print hal-02497137, HAL.
  • Handle: RePEc:hal:journl:hal-02497137
    DOI: 10.1007/s00366-018-00696-8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mousumi Banerjee & Vanita Garg & Kusum Deep, 2023. "Solving structural and reliability optimization problems using efficient mutation strategies embedded in sine cosine algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 307-327, March.
    2. Shahad Ibrahim Mohammed & Nazar K. Hussein & Outman Haddani & Mansourah Aljohani & Mohammed Abdulrazaq Alkahya & Mohammed Qaraad, 2024. "Fine-Tuned Cardiovascular Risk Assessment: Locally Weighted Salp Swarm Algorithm in Global Optimization," Mathematics, MDPI, vol. 12(2), pages 1-39, January.
    3. Laith Abualigah & Ali Diabat & Davor Svetinovic & Mohamed Abd Elaziz, 2023. "Boosted Harris Hawks gravitational force algorithm for global optimization and industrial engineering problems," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2693-2728, August.
    4. Tawhid, Mohamed A. & Ibrahim, Abdelmonem M., 2022. "Improved salp swarm algorithm combined with chaos," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 113-148.
    5. Örnek, Bülent Nafi & Aydemir, Salih Berkan & Düzenli, Timur & Özak, Bilal, 2022. "A novel version of slime mould algorithm for global optimization and real world engineering problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 253-288.
    6. Mohammed Qaraad & Abdussalam Aljadania & Mostafa Elhosseini, 2023. "Large-Scale Competitive Learning-Based Salp Swarm for Global Optimization and Solving Constrained Mechanical and Engineering Design Problems," Mathematics, MDPI, vol. 11(6), pages 1-46, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02497137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.