IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i6p1362-d1094062.html
   My bibliography  Save this article

Large-Scale Competitive Learning-Based Salp Swarm for Global Optimization and Solving Constrained Mechanical and Engineering Design Problems

Author

Listed:
  • Mohammed Qaraad

    (Computer Science Department, Faculty of Science, Abdelmalek Essaadi University, Tetouan 93000, Morocco
    Department of Computer Science, Faculty of Science, Amran University, Amran 9677, Yemen)

  • Abdussalam Aljadania

    (Department of Management, College of Business Administration in Yanbu, Taibah University, Al-Madinah Al-Munawarah 41411, Saudi Arabia)

  • Mostafa Elhosseini

    (College of Computer Science and Engineering, Taibah University, Yanbu 46421, Saudi Arabia
    Computers and Control Systems Engineering Department, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt)

Abstract

The Competitive Swarm Optimizer (CSO) has emerged as a prominent technique for solving intricate optimization problems by updating only half of the population in each iteration. Despite its effectiveness, the CSO algorithm often exhibits a slow convergence rate and a tendency to become trapped in local optimal solutions, as is common among metaheuristic algorithms. To address these challenges, this paper proposes a hybrid approach combining the CSO with the Salp Swarm algorithm (SSA), CL-SSA, to increase the convergence rate and enhance search space exploration. The proposed approach involves a two-step process. In the first step, a pairwise competition mechanism is introduced to segregate the solutions into winners and losers. The winning population is updated through strong exploitation using the SSA algorithm. In the second step, non-winning solutions learn from the winners, achieving a balance between exploration and exploitation. The performance of the CL-SSA is evaluated on various benchmark functions, including the CEC2017 benchmark with dimensions 50 and 100, the CEC2008lsgo benchmark with dimensions 200, 500 and 1000, as well as a set of seven well-known constrained design challenges in various engineering domains defined in the CEC2020 conference. The CL-SSA is compared to other metaheuristics and advanced algorithms, and its results are analyzed through statistical tests such as the Friedman and Wilcoxon rank-sum tests. The statistical analysis demonstrates that the CL-SSA algorithm exhibits improved exploitation, exploration, and convergence patterns compared to other algorithms, including SSA and CSO, as well as popular algorithms. Furthermore, the proposed hybrid approach performs better in solving most test functions.

Suggested Citation

  • Mohammed Qaraad & Abdussalam Aljadania & Mostafa Elhosseini, 2023. "Large-Scale Competitive Learning-Based Salp Swarm for Global Optimization and Solving Constrained Mechanical and Engineering Design Problems," Mathematics, MDPI, vol. 11(6), pages 1-46, March.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1362-:d:1094062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/6/1362/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/6/1362/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Narinder Singh & Le Hoang Son & Francisco Chiclana & Jean-Pierre Magnot, 2020. "A new fusion of salp swarm with sine cosine for optimization of non-linear functions," Post-Print hal-02497137, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bushra Shakir Mahmood & Nazar K. Hussein & Mansourah Aljohani & Mohammed Qaraad, 2023. "A Modified Gradient Search Rule Based on the Quasi-Newton Method and a New Local Search Technique to Improve the Gradient-Based Algorithm: Solar Photovoltaic Parameter Extraction," Mathematics, MDPI, vol. 11(19), pages 1-40, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Laith Abualigah & Ali Diabat & Davor Svetinovic & Mohamed Abd Elaziz, 2023. "Boosted Harris Hawks gravitational force algorithm for global optimization and industrial engineering problems," Journal of Intelligent Manufacturing, Springer, vol. 34(6), pages 2693-2728, August.
    2. Shahad Ibrahim Mohammed & Nazar K. Hussein & Outman Haddani & Mansourah Aljohani & Mohammed Abdulrazaq Alkahya & Mohammed Qaraad, 2024. "Fine-Tuned Cardiovascular Risk Assessment: Locally Weighted Salp Swarm Algorithm in Global Optimization," Mathematics, MDPI, vol. 12(2), pages 1-39, January.
    3. Tawhid, Mohamed A. & Ibrahim, Abdelmonem M., 2022. "Improved salp swarm algorithm combined with chaos," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 202(C), pages 113-148.
    4. Mousumi Banerjee & Vanita Garg & Kusum Deep, 2023. "Solving structural and reliability optimization problems using efficient mutation strategies embedded in sine cosine algorithm," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 307-327, March.
    5. Örnek, Bülent Nafi & Aydemir, Salih Berkan & Düzenli, Timur & Özak, Bilal, 2022. "A novel version of slime mould algorithm for global optimization and real world engineering problems," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 198(C), pages 253-288.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:6:p:1362-:d:1094062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.