IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02055196.html
   My bibliography  Save this paper

Systèmes de recommandation et réseaux sociaux, quelles implications pour le marketing digital ?

Author

Listed:
  • Maria Mercanti-Guérin

    (DICEN-IDF - Dispositifs d'Information et de Communication à l'Ère du Numérique - Paris Île-de-France - UPN - Université Paris Nanterre - CNAM - Conservatoire National des Arts et Métiers [CNAM] - UPEM - Université Paris-Est Marne-la-Vallée)

Abstract

Les systèmes de recommandation sont pratiqués depuis l'origine par les réseaux sociaux. Le cas le plus emblématique est celui de Facebook qui intègre au fil d'actualité les préférences des amis de l'utilisateur. Au graphe social, les réseaux sociaux les plus connus ajoutent les graphes socio-géolocalisés (graph search de Facebook). L'ensemble de ces systèmes de recommandation fait l'objet de constructions d'offres publicitaires monétisées. S'ils sont incontournables pour les modèles économiques des réseaux comme Google Plus, YouTube, Twitter ou Facebook, ils soulèvent, néanmoins, un certain nombre de questions sur l'évolution du marketing digital et plus spécifiquement du e-commerce . Par ailleurs, ils ne représentent qu'un type de recommandation et se retrouvent, de plus en plus, appliqués en synergie avec d'autres types de recommandations dont la recommandation personnalisée. L'objectif de ce chapitre est donc de décrire, dans un premier temps, le concept de recommandation sociale. Nous montrerons que sa gestion est difficile pour les marques et que les systèmes de recommandation permettent de s'affranchir d'un certain nombre de difficultés portant, notamment, sur l'émetteur de la recommandation (consommateur, expert, leader d'opinion...). Dans un deuxième temps, nous mettrons en exergue les apports de ces systèmes de recommandation sur la croissance du commerce social. Nous traiterons de leur efficacité en termes de ventes en ligne, leurs principes de fonctionnement, leurs principales utilisations. Une présentation de la recommandation sociale telle qu'elle est appliquée par Facebook nous permettra d'aborder son acceptation par les consommateurs et des questionnements plus théoriques destinés à faire avancer la réflexion sur les bonnes pratiques de la recommandation sociale ainsi que les évolutions technologiques qui accroissent considérablement ses possibilités.

Suggested Citation

  • Maria Mercanti-Guérin, 2014. "Systèmes de recommandation et réseaux sociaux, quelles implications pour le marketing digital ?," Post-Print hal-02055196, HAL.
  • Handle: RePEc:hal:journl:hal-02055196
    Note: View the original document on HAL open archive server: https://hal.science/hal-02055196
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02055196/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fabrice Larceneux, 2007. "Buzz et recommandation sur internet : quels effets sur le box office ?," Post-Print halshs-00660075, HAL.
    2. Herr, Paul M & Kardes, Frank R & Kim, John, 1991. "Effects of Word-of-Mouth and Product-Attribute Information on Persuasion: An Accessibility-Diagnosticity Perspective," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 17(4), pages 454-462, March.
    3. Eric Vernette & Laurent Bertrandias & Jean-Philippe Galan & A. Vignolles, 2012. "Construit et concept de leader d'opinion dans les réseaux sociaux : proposition d'un agenda de recherche," Post-Print halshs-00742262, HAL.
    4. Kyeongheui Kim & Meng Zhang & Xiuping Li, 2008. "Effects of Temporal and Social Distance on Consumer Evaluations," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 35(4), pages 706-713, August.
    5. repec:dau:papers:123456789/8140 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Mercanti-Guérin, 2014. "Recommender Systems and Social Networks: What Are the Implications for Digital Marketing?," Post-Print hal-03124513, HAL.
    2. Jin, Liyin & Hu, Bingyan & He, Yanqun, 2014. "The Recent versus The Out-Dated: An Experimental Examination of the Time-Variant Effects of Online Consumer Reviews," Journal of Retailing, Elsevier, vol. 90(4), pages 552-566.
    3. Li, Hui & Xu, Yunjie & Huang, Lihua, 2021. "When less is more? The contingent effect of product supply limitation in the release of new electronic products," Journal of Retailing and Consumer Services, Elsevier, vol. 60(C).
    4. Tuk, M.A. & Verlegh, P.W.J. & Smidts, A. & Wigboldus, D.H.J., 2008. "Interpersonal Relationships Moderate the Effect of Faces on Person Judgments," ERIM Report Series Research in Management ERS-2008-057-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    5. Skarmeas, Dionysis & Leonidou, Constantinos N., 2013. "When consumers doubt, Watch out! The role of CSR skepticism," Journal of Business Research, Elsevier, vol. 66(10), pages 1831-1838.
    6. Dong Hoo Kim & Doori Song, 2019. "Can brand experience shorten consumers’ psychological distance toward the brand? The effect of brand experience on consumers’ construal level," Journal of Brand Management, Palgrave Macmillan, vol. 26(3), pages 255-267, May.
    7. Inyoung Chae & Andrew T. Stephen & Yakov Bart & Dai Yao, 2017. "Spillover Effects in Seeded Word-of-Mouth Marketing Campaigns," Marketing Science, INFORMS, vol. 36(1), pages 89-104, January.
    8. Tomi Rajala, 2019. "Mind the Information Expectation Gap," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(1), pages 104-125, March.
    9. Demont, Matty & Rutsaert, Pieter & Ndour, Maimouna & Verbeke, Wim & Seck, Papa Abdoulaye & Tollens, Eric, 2012. "Experimental auctions, collective induction and choice shift: Willingness-to-pay for rice quality in Senegal," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126861, International Association of Agricultural Economists.
    10. Robert J. Shiller, 2017. "Narrative Economics," American Economic Review, American Economic Association, vol. 107(4), pages 967-1004, April.
    11. repec:oup:jecgeo:v:50:y:2023:i:2:p:363-381. is not listed on IDEAS
    12. Takumi Kato, 2021. "Brand loyalty explained by concept recall: recognizing the significance of the brand concept compared to features," Journal of Marketing Analytics, Palgrave Macmillan, vol. 9(3), pages 185-198, September.
    13. Wang, Xuehua & Wang, Xiaoyu & Fang, Xiang & Jiang, Qingyun, 2018. "Power distance belief and brand personality evaluations," Journal of Business Research, Elsevier, vol. 84(C), pages 89-99.
    14. Inman, J. Jeffrey & Nikolova, Hristina, 2017. "Shopper-Facing Retail Technology: A Retailer Adoption Decision Framework Incorporating Shopper Attitudes and Privacy Concerns," Journal of Retailing, Elsevier, vol. 93(1), pages 7-28.
    15. Marleen Hermans & Néomie Raassens & Kathleen Cleeren, 2024. "What is the impact of a conflict delisting on firm value? An investigation of the role of conflict and firm characteristics," Journal of the Academy of Marketing Science, Springer, vol. 52(1), pages 240-259, January.
    16. Maise Soares Pereira & Ivan Lapuente Garrido & Celso Augusto de Matos, 2015. "Firm-Created Word-of-Mouth Recommendation: is it Also Worthwhile?," Brazilian Business Review, Fucape Business School, vol. 12(3), pages 91-118, May.
    17. Dwayne D. Gremler & Yves Vaerenbergh & Elisabeth C. Brüggen & Kevin P. Gwinner, 2020. "Understanding and managing customer relational benefits in services: a meta-analysis," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 565-583, May.
    18. Yingtao Shen & Shenyu Li & Michelle DeMoss, 2012. "The Effect Of Quantitative Electronic Word Of Mouth On Consumer Perceived Product Quality," International Journal of Management and Marketing Research, The Institute for Business and Finance Research, vol. 5(2), pages 19-29.
    19. Elvira Ismagilova & Emma L. Slade & Nripendra P. Rana & Yogesh K. Dwivedi, 2020. "The Effect of Electronic Word of Mouth Communications on Intention to Buy: A Meta-Analysis," Information Systems Frontiers, Springer, vol. 22(5), pages 1203-1226, October.
    20. Chakravarty, Anindita & Liu, Yong & Mazumdar, Tridib, 2010. "The Differential Effects of Online Word-of-Mouth and Critics' Reviews on Pre-release Movie Evaluation," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 185-197.
    21. Kim, Junyong & Gupta, Pranjal, 2012. "Emotional expressions in online user reviews: How they influence consumers' product evaluations," Journal of Business Research, Elsevier, vol. 65(7), pages 985-992.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02055196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.