IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02021772.html
   My bibliography  Save this paper

Large large-trader activity weakens the long memory of limit order markets

Author

Listed:
  • Kevin Primicerio

    (MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec)

  • Damien Challet

    (MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec, MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec - Université Paris-Saclay)

Abstract

Using more than 6.7 billions of trades, we explore how the tick-by-tick dynamics of limit order books depends on the aggregate actions of large investment funds on a much larger (quarterly) timescale. In particular, we find that the well-established long memory of market order signs is markedly weaker when large investment funds trade either in a directional way and even weaker when their aggregate participation ratio is large. Conversely, we investigate to what respect a weaker memory of market order signs predicts that an asset is being actively traded by large funds. Theoretical arguments suggest two simple mechanisms that contribute to the observed effect: a larger number of active meta-orders and a modification of the distribution of size of meta-orders. Empirical evidence suggests that the number of active meta-orders is the most important contributor to the loss of market order sign memory.

Suggested Citation

  • Kevin Primicerio & Damien Challet, 2019. "Large large-trader activity weakens the long memory of limit order markets," Post-Print hal-02021772, HAL.
  • Handle: RePEc:hal:journl:hal-02021772
    DOI: 10.1142/S2382626619500047
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Wei-Xing Zhou & Guo-Hua Mu & Si-Wei Chen & Didier Sornette, "undated". "Strategies used as Spectroscopy of Financial Markets Reveal New Stylized Facts," Working Papers ETH-RC-11-005, ETH Zurich, Chair of Systems Design.
    2. P. Blanc & J. Donier & J.-P. Bouchaud, 2017. "Quadratic Hawkes processes for financial prices," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 171-188, February.
    3. Jean-Philippe Bouchaud & Yuval Gefen & Marc Potters & Matthieu Wyart, 2004. "Fluctuations and response in financial markets: the subtle nature of 'random' price changes," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 176-190.
    4. Gilles Zumbach, 2009. "Time reversal invariance in finance," Quantitative Finance, Taylor & Francis Journals, vol. 9(5), pages 505-515.
    5. Wei-Xing Zhou & Guo-Hua Mu & Wei Chen & Didier Sornette, 2011. "Investment Strategies Used as Spectroscopy of Financial Markets Reveal New Stylized Facts," PLOS ONE, Public Library of Science, vol. 6(9), pages 1-9, September.
    6. F. Lillo & Szabolcs Mike & J. Doyne Farmer, 2004. "A theory for long-memory in supply and demand," Papers cond-mat/0412708, arXiv.org, revised Mar 2005.
    7. Lillo Fabrizio & Farmer J. Doyne, 2004. "The Long Memory of the Efficient Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(3), pages 1-35, September.
    8. Tóth, Bence & Palit, Imon & Lillo, Fabrizio & Farmer, J. Doyne, 2015. "Why is equity order flow so persistent?," Journal of Economic Dynamics and Control, Elsevier, vol. 51(C), pages 218-239.
    9. Paul Lynch & Gilles Zumbach, 2003. "Market heterogeneities and the causal structure of volatility," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 320-331.
    10. F. Lillo, 2007. "Limit order placement as an utility maximization problem and the origin of power law distribution of limit order prices," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(4), pages 453-459, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    2. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    3. Bonart, Julius & Lillo, Fabrizio, 2018. "A continuous and efficient fundamental price on the discrete order book grid," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 698-713.
    4. Jean-Philippe Bouchaud & J. Doyne Farmer & Fabrizio Lillo, 2008. "How markets slowly digest changes in supply and demand," Papers 0809.0822, arXiv.org.
    5. Joshin Murai, 2016. "A model of transaction signs with order splitting and public information," Evolutionary and Institutional Economics Review, Springer, vol. 13(2), pages 469-480, December.
    6. Damian Eduardo Taranto & Giacomo Bormetti & Jean-Philippe Bouchaud & Fabrizio Lillo & Bence Toth, 2016. "Linear models for the impact of order flow on prices II. The Mixture Transition Distribution model," Papers 1604.07556, arXiv.org.
    7. Martin D. Gould & Mason A. Porter & Sam D. Howison, 2015. "The Long Memory of Order Flow in the Foreign Exchange Spot Market," Papers 1504.04354, arXiv.org, revised Oct 2015.
    8. Ioanna-Yvonni Tsaknaki & Fabrizio Lillo & Piero Mazzarisi, 2023. "Online Learning of Order Flow and Market Impact with Bayesian Change-Point Detection Methods," Papers 2307.02375, arXiv.org, revised May 2024.
    9. Damian Eduardo Taranto & Giacomo Bormetti & Jean-Philippe Bouchaud & Fabrizio Lillo & Bence Toth, 2016. "Linear models for the impact of order flow on prices I. Propagators: Transient vs. History Dependent Impact," Papers 1602.02735, arXiv.org.
    10. Julius Bonart & Fabrizio Lillo, 2016. "A continuous and efficient fundamental price on the discrete order book grid," Papers 1608.00756, arXiv.org, revised Aug 2016.
    11. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    12. R'emy Chicheportiche & Jean-Philippe Bouchaud, 2012. "The fine-structure of volatility feedback I: multi-scale self-reflexivity," Papers 1206.2153, arXiv.org, revised Sep 2013.
    13. Thibault Jaisson, 2014. "Market impact as anticipation of the order flow imbalance," Papers 1402.1288, arXiv.org.
    14. B. Tóth & Z. Eisler & F. Lillo & J. Kockelkoren & J.-P. Bouchaud & J.D. Farmer, 2012. "How does the market react to your order flow?," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1015-1024, May.
    15. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    16. Omar El Euch & Jim Gatheral & Radov{s} Radoiv{c}i'c & Mathieu Rosenbaum, 2018. "The Zumbach effect under rough Heston," Papers 1809.02098, arXiv.org.
    17. Chiarella, Carl & Iori, Giulia, 2009. "The impact of heterogeneous trading rules on the limit order book and order flows," Journal of Economic Dynamics and Control, Elsevier, vol. 33(3), pages 525-537.
    18. Jim Gatheral & Paul Jusselin & Mathieu Rosenbaum, 2020. "The quadratic rough Heston model and the joint S&P 500/VIX smile calibration problem," Papers 2001.01789, arXiv.org.
    19. Aditi Dandapani & Paul Jusselin & Mathieu Rosenbaum, 2019. "From quadratic Hawkes processes to super-Heston rough volatility models with Zumbach effect," Papers 1907.06151, arXiv.org, revised Jan 2021.
    20. Yan Li & Bo Zheng & Ting-Ting Chen & Xiong-Fei Jiang, 2017. "Fluctuation-driven price dynamics and investment strategies," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02021772. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.