IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01405306.html
   My bibliography  Save this paper

Is individual rationality essential to market price formation? The contribution of zero‐intelligence agent trading models

Author

Listed:
  • Paola Tubaro

    (CNRS - Centre National de la Recherche Scientifique, University of Greenwich Business School - University of Greenwich)

Abstract

The paper investigates the minimum level of individual rationality that is needed for market prices to converge toward their equilibrium level. It does so by examining the theoretical and methodological foundations of the ‘zero‐intelligence' (ZI) agent trading approach, with which Gode and Sunder (1993a) claimed that weak individual rationality requirements suffice to obtain equilibrium prices. The paper shows that ZI agents are endowed with a higher degree of rationality than previously believed. Though not maximizing utility, they exhibit utility‐improving behavior, and their decision‐making rules fulfill important predictions of the theory of choice based on maximization, namely downward‐sloping individual demand and upward‐sloping individual supply. Additional cognitive skills would be required, were some simplifying assumptions of the basic model removed. Gode and Sunder's analysis supports a non‐neoclassical rational choice theory, in which optimization can be replaced by a variety of behavioral rules, while still preserving important results on the functioning of markets.

Suggested Citation

  • Paola Tubaro, 2009. "Is individual rationality essential to market price formation? The contribution of zero‐intelligence agent trading models," Post-Print hal-01405306, HAL.
  • Handle: RePEc:hal:journl:hal-01405306
    DOI: 10.1080/13501780802225528
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. J. Doyne Farmer & Paolo Patelli & Ilija I. Zovko, 2003. "The Predictive Power of Zero Intelligence in Financial Markets," Papers cond-mat/0309233, arXiv.org, revised Feb 2004.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paola Tubaro, 2011. "Computational Economics," Chapters, in: John B. Davis & D. Wade Hands (ed.), The Elgar Companion to Recent Economic Methodology, chapter 10, Edward Elgar Publishing.
    2. Moscati, Ivan & Tubaro, Paola, 2009. "Random behavior and the as-if defense of rational choice theory in demand experiments," LSE Research Online Documents on Economics 27001, London School of Economics and Political Science, LSE Library.
    3. Giuseppe Attanasi & Samuele Centorrino & Ivan Moscati, 2011. "Double Auction Equilibrium and Efficiency in a Classroom Experimental Search Market," LERNA Working Papers 11.03.337, LERNA, University of Toulouse.
    4. Brewer, Paul & Ratan, Anmol, 2019. "Profitability, efficiency, and inequality in double auction markets with snipers," Journal of Economic Behavior & Organization, Elsevier, vol. 164(C), pages 486-499.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juan C. Henao-Londono & Sebastian M. Krause & Thomas Guhr, 2021. "Price response functions and spread impact in correlated financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(4), pages 1-20, April.
    2. Delattre, Sylvain & Robert, Christian Y. & Rosenbaum, Mathieu, 2013. "Estimating the efficient price from the order flow: A Brownian Cox process approach," Stochastic Processes and their Applications, Elsevier, vol. 123(7), pages 2603-2619.
    3. Wang, Yougui & Stanley, H.E., 2009. "Statistical approach to partial equilibrium analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(7), pages 1173-1180.
    4. Gu, Gao-Feng & Chen, Wei & Zhou, Wei-Xing, 2008. "Empirical regularities of order placement in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(13), pages 3173-3182.
    5. Ivan Jericevich & Patrick Chang & Tim Gebbie, 2021. "Simulation and estimation of a point-process market-model with a matching engine," Papers 2105.02211, arXiv.org, revised Aug 2021.
    6. Wei Cui & Anthony Brabazon & Michael O'Neill, 2011. "Dynamic trade execution: a grammatical evolution approach," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 2(1/2), pages 4-31.
    7. Svitlana Vyetrenko & David Byrd & Nick Petosa & Mahmoud Mahfouz & Danial Dervovic & Manuela Veloso & Tucker Hybinette Balch, 2019. "Get Real: Realism Metrics for Robust Limit Order Book Market Simulations," Papers 1912.04941, arXiv.org.
    8. J. Doyne Farmer & Austin Gerig & Fabrizio Lillo & Henri Waelbroeck, 2013. "How efficiency shapes market impact," Quantitative Finance, Taylor & Francis Journals, vol. 13(11), pages 1743-1758, November.
    9. Mark Paddrik & Roy Hayes & William Scherer & Peter Beling, 2017. "Effects of limit order book information level on market stability metrics," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(2), pages 221-247, July.
    10. Wright, Ian, 2009. "Implicit Microfoundations for Macroeconomics," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-27.
    11. Olivier Brandouy & Angelo Corelli & Iryna Veryzhenko & Roger Waldeck, 2012. "A re-examination of the “zero is enough” hypothesis in the emergence of financial stylized facts," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 7(2), pages 223-248, October.
    12. Xintong Wang & Christopher Hoang & Yevgeniy Vorobeychik & Michael P. Wellman, 2021. "Spoofing the Limit Order Book: A Strategic Agent-Based Analysis," Games, MDPI, vol. 12(2), pages 1-43, May.
    13. Flaminio Squazzoni, 2010. "The impact of agent-based models in the social sciences after 15 years of incursions," History of Economic Ideas, Fabrizio Serra Editore, Pisa - Roma, vol. 18(2), pages 197-234.
    14. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    15. J. Emeterio Navarro-Barrientos & Frank E. Walter & Frank Schweitzer, 2008. "Risk-Seeking Versus Risk-Avoiding Investments In Noisy Periodic Environments," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 971-994.
    16. Claude Montmarquette, 2008. "L'économétrie des données expérimentales : défis et opportunités," Économie et Prévision, Programme National Persée, vol. 182(1), pages 7-17.
    17. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    18. Georges, Christophre, 2008. "Staggered updating in an artificial financial market," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2809-2825, September.
    19. Daniel Fricke & Austin Gerig, 2018. "Too fast or too slow? Determining the optimal speed of financial markets," Quantitative Finance, Taylor & Francis Journals, vol. 18(4), pages 519-532, April.
    20. Wei-Xing Zhou, 2012. "Universal price impact functions of individual trades in an order-driven market," Quantitative Finance, Taylor & Francis Journals, vol. 12(8), pages 1253-1263, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01405306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.