IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00827942.html
   My bibliography  Save this paper

The near-extreme density of intraday log-returns

Author

Listed:
  • Mauro Politi

    (SSRI - SSRI & Department of Economics and Business - International Christian University, BCAM - Basque Center for Applied Mathematics - Basque Center for Applied Mathematics)

  • Nicolas Millot

    (MAS - Mathématiques Appliquées aux Systèmes - EA 4037 - Ecole Centrale Paris, FiQuant - Chaire de finance quantitative - MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec)

  • Anirban Chakraborti

    (MAS - Mathématiques Appliquées aux Systèmes - EA 4037 - Ecole Centrale Paris, FiQuant - Chaire de finance quantitative - MICS - Mathématiques et Informatique pour la Complexité et les Systèmes - CentraleSupélec)

Abstract

The extreme event statistics plays a very important role in the theory and practice of time series analysis. The reassembly of classical theoretical results is often undermined by nonstationarity and dependence between increments. Furthermore, the convergence to the limit distributions can be slow, requiring a huge amount of records to obtain significant statistics, and thus limiting its practical applications. Focussing, instead, on the closely related density of ''near-extremes'' - the distance between a record and the maximal value - can render the statistical methods to be more suitable in the practical applications and/or validations of models. We apply this recently proposed method in the empirical validation of an adapted financial market model of the intraday market fluctuations.

Suggested Citation

  • Mauro Politi & Nicolas Millot & Anirban Chakraborti, 2011. "The near-extreme density of intraday log-returns," Post-Print hal-00827942, HAL.
  • Handle: RePEc:hal:journl:hal-00827942
    DOI: 10.1016/j.physa.2011.05.029
    Note: View the original document on HAL open archive server: https://hal.science/hal-00827942
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00827942/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.physa.2011.05.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Politi, Mauro & Scalas, Enrico, 2008. "Fitting the empirical distribution of intertrade durations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(8), pages 2025-2034.
    2. Coronel-Brizio, H.F. & Hernández-Montoya, A.R., 2010. "The Anderson–Darling test of fit for the power-law distribution from left-censored samples," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(17), pages 3508-3515.
    3. H. F. Coronel-Brizio & A. R. Hernandez-Montoya, 2010. "The Anderson-Darling test of fit for the power law distribution from left censored samples," Papers 1004.0417, arXiv.org.
    4. Constantino Tsallis & Celia Anteneodo & Lisa Borland & Roberto Osorio, 2003. "Nonextensive statistical mechanics and economics," Papers cond-mat/0301307, arXiv.org.
    5. L. Borland & J. P. Bouchaud, 2004. "A Non-Gaussian Option Pricing Model with Skew," Papers cond-mat/0403022, arXiv.org, revised Mar 2004.
    6. Austin Gerig & Javier Vicente & Miguel A. Fuentes, 2009. "Model for Non-Gaussian Intraday Stock Returns," Papers 0906.3841, arXiv.org, revised Dec 2009.
    7. Lin, Jin-Guan & Huang, Chao & Zhuang, Qing-Yun & Zhu, Li-Ping, 2010. "Estimating generalized state density of near-extreme events and its applications in analyzing stock data," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 13-20, August.
    8. Lisa Borland & Jean-Philippe Bouchaud, 2004. "A non-Gaussian option pricing model with skew," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 499-514.
    9. Tsallis, Constantino & Anteneodo, Celia & Borland, Lisa & Osorio, Roberto, 2003. "Nonextensive statistical mechanics and economics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 324(1), pages 89-100.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mauro Politi & Nicolas Millot & Anirban Chakraborti, 2011. "The near-extreme density of intraday log-returns," Papers 1106.0039, arXiv.org.
    2. Politi, Mauro & Millot, Nicolas & Chakraborti, Anirban, 2012. "The near-extreme density of intraday log-returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(1), pages 147-155.
    3. Marian Gidea & Yuri Katz, 2017. "Topological Data Analysis of Financial Time Series: Landscapes of Crashes," Papers 1703.04385, arXiv.org, revised Apr 2017.
    4. Federica De Domenico & Giacomo Livan & Guido Montagna & Oreste Nicrosini, 2023. "Modeling and Simulation of Financial Returns under Non-Gaussian Distributions," Papers 2302.02769, arXiv.org.
    5. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    6. Tapiero, Oren J., 2013. "A maximum (non-extensive) entropy approach to equity options bid–ask spread," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(14), pages 3051-3060.
    7. Gottschalk, Sylvia, 2017. "Entropy measure of credit risk in highly correlated markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 11-19.
    8. Rodrigues, Ana Flávia P. & Cavalcante, Charles C. & Crisóstomo, Vicente L., 2019. "A projection pricing model for non-Gaussian financial returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 534(C).
    9. Trindade, Marco A.S. & Floquet, Sergio & Filho, Lourival M. Silva, 2020. "Portfolio theory, information theory and Tsallis statistics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    10. Wang, Xiao-Tian & Li, Zhe & Zhuang, Le, 2017. "European option pricing under the Student’s t noise with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 848-858.
    11. Ni, Xiao-Hui & Jiang, Zhi-Qiang & Gu, Gao-Feng & Ren, Fei & Chen, Wei & Zhou, Wei-Xing, 2010. "Scaling and memory in the non-Poisson process of limit order cancelation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2751-2761.
    12. Ruan, Yong-Ping & Zhou, Wei-Xing, 2011. "Long-term correlations and multifractal nature in the intertrade durations of a liquid Chinese stock and its warrant," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(9), pages 1646-1654.
    13. Gangadhar Nayak & Amit Kumar Singh & Dilip Senapati, 2021. "Computational Modeling of Non-Gaussian Option Price Using Non-extensive Tsallis’ Entropy Framework," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1353-1371, April.
    14. Diks, Cees & Hommes, Cars & Zeppini, Paolo, 2013. "More memory under evolutionary learning may lead to chaos," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 808-812.
    15. Gu, Gao-Feng & Ren, Fei & Ni, Xiao-Hui & Chen, Wei & Zhou, Wei-Xing, 2010. "Empirical regularities of opening call auction in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(2), pages 278-286.
    16. Devi, Sandhya, 2021. "Asymmetric Tsallis distributions for modeling financial market dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 578(C).
    17. Zhao, Pan & Pan, Jian & Yue, Qin & Zhang, Jinbo, 2021. "Pricing of financial derivatives based on the Tsallis statistical theory," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Meyer-Gohde, Alexander, 2019. "Generalized entropy and model uncertainty," Journal of Economic Theory, Elsevier, vol. 183(C), pages 312-343.
    19. Billio, Monica & Casarin, Roberto & Costola, Michele & Pasqualini, Andrea, 2016. "An entropy-based early warning indicator for systemic risk," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 45(C), pages 42-59.
    20. Zunino, L. & Pérez, D.G. & Kowalski, A. & Martín, M.T. & Garavaglia, M. & Plastino, A. & Rosso, O.A., 2008. "Fractional Brownian motion, fractional Gaussian noise, and Tsallis permutation entropy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(24), pages 6057-6068.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00827942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.