IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00735843.html
   My bibliography  Save this paper

Ruin problems with worsening risks or with infinite mean claims

Author

Listed:
  • Dominik Kortschak

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Stéphane Loisel

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

  • Pierre Ribereau

    (SAF - Laboratoire de Sciences Actuarielle et Financière - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon)

Abstract

In this paper, we obtain asymptotic ruin probabilities in two models where claim amounts become more and more adverse, because of phenomena like climate change or some kind of sectorial inflation. The method we use also enables us to study a risk model in which claims have infinite mean. In such models, ruin probability can be controlled by a strong increase in the premium income rate, which causes premium to become unacceptable for customers. We provide numerical illustrations of the impact of the (uncertain) speed of change in the parameter of the claim size distribution, both in terms of ruin and in terms of time at which premium becomes too high.

Suggested Citation

  • Dominik Kortschak & Stéphane Loisel & Pierre Ribereau, 2014. "Ruin problems with worsening risks or with infinite mean claims," Post-Print hal-00735843, HAL.
  • Handle: RePEc:hal:journl:hal-00735843
    Note: View the original document on HAL open archive server: https://hal.science/hal-00735843
    as

    Download full text from publisher

    File URL: https://hal.science/hal-00735843/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Søren Asmussen & Romain Biard, 2011. "Ruin probabilities for a regenerative Poisson gap generated risk process," Post-Print hal-00569254, HAL.
    2. Asmussen, Søren & Henriksen, Lotte Fløe & Klüppelberg, Claudia, 1994. "Large claims approximations for risk processes in a Markovian environment," Stochastic Processes and their Applications, Elsevier, vol. 54(1), pages 29-43, November.
    3. Bargès, Mathieu & Cossette, Hélène & Loisel, Stéphane & Marceau, Étienne, 2011. "On the Moments of Aggregate Discounted Claims with Dependence Introduced by a FGM Copula," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 215-238, May.
    4. Gerber, Hans U., 1974. "On Additive Premium Calculation Principles," ASTIN Bulletin, Cambridge University Press, vol. 7(3), pages 215-222, March.
    5. Kalashnikov, Vladimir & Konstantinides, Dimitrios, 2000. "Ruin under interest force and subexponential claims: a simple treatment," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 145-149, August.
    6. Paulsen, Jostein, 1993. "Risk theory in a stochastic economic environment," Stochastic Processes and their Applications, Elsevier, vol. 46(2), pages 327-361, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:hal:wpaper:hal-00735843 is not listed on IDEAS
    2. Jostein Paulsen, 2008. "Ruin models with investment income," Papers 0806.4125, arXiv.org, revised Dec 2008.
    3. Woo, Jae-Kyung & Cheung, Eric C.K., 2013. "A note on discounted compound renewal sums under dependency," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 170-179.
    4. Yuri Kabanov & Platon Promyslov, 2023. "Ruin probabilities for a Sparre Andersen model with investments: the case of annuity payments," Finance and Stochastics, Springer, vol. 27(4), pages 887-902, October.
    5. Tobias Fissler & Silvana M. Pesenti, 2022. "Sensitivity Measures Based on Scoring Functions," Papers 2203.00460, arXiv.org, revised Jul 2022.
    6. Nyrhinen, Harri, 2007. "Convex large deviation rate functions under mixtures of linear transformations, with an application to ruin theory," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 947-959, July.
    7. Blier-Wong, Christopher & Cossette, Hélène & Marceau, Etienne, 2023. "Risk aggregation with FGM copulas," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 102-120.
    8. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    9. Yuen, Kam C. & Wang, Guojing & Ng, Kai W., 2004. "Ruin probabilities for a risk process with stochastic return on investments," Stochastic Processes and their Applications, Elsevier, vol. 110(2), pages 259-274, April.
    10. Nabil Kazi-Tani, 2020. "Indifference Pricing of Reinsurance with Reinstatements Using Coherent Monetary Criteria," Working Papers hal-01742638, HAL.
    11. Jiang, Tao & Wang, Yuebao & Chen, Yang & Xu, Hui, 2015. "Uniform asymptotic estimate for finite-time ruin probabilities of a time-dependent bidimensional renewal model," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 45-53.
    12. Bae, Taehan & Kim, Changki & Kulperger, Reginald J., 2009. "Securitization of motor insurance loss rate risks," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 48-58, February.
    13. Kostadinova, Radostina, 2007. "Optimal investment for insurers when the stock price follows an exponential Lévy process," Insurance: Mathematics and Economics, Elsevier, vol. 41(2), pages 250-263, September.
    14. Eberlein, Ernst & Kabanov, Yuri & Schmidt, Thorsten, 2022. "Ruin probabilities for a Sparre Andersen model with investments," Stochastic Processes and their Applications, Elsevier, vol. 144(C), pages 72-84.
    15. Tomasz R. Bielecki & Igor Cialenco & Marcin Pitera & Thorsten Schmidt, 2019. "Fair Estimation of Capital Risk Allocation," Papers 1902.10044, arXiv.org, revised Nov 2019.
    16. Tsanakas, Andreas, 2009. "To split or not to split: Capital allocation with convex risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 44(2), pages 268-277, April.
    17. Kamil J. Mizgier & Joseph M. Pasia & Srinivas Talluri, 2017. "Multiobjective capital allocation for supplier development under risk," International Journal of Production Research, Taylor & Francis Journals, vol. 55(18), pages 5243-5258, September.
    18. Florin Avram & Romain Biard & Christophe Dutang & Stéphane Loisel & Landy Rabehasaina, 2014. "A survey of some recent results on Risk Theory," Post-Print hal-01616178, HAL.
    19. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    20. Constantinos Kardaras & Scott Robertson, 2017. "Continuous-time perpetuities and time reversal of diffusions," Finance and Stochastics, Springer, vol. 21(1), pages 65-110, January.
    21. Julie Thøgersen, 2016. "Optimal Premium as a Function of the Deductible: Customer Analysis and Portfolio Characteristics," Risks, MDPI, vol. 4(4), pages 1-19, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00735843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.