IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00653437.html
   My bibliography  Save this paper

Hedging performance of the Libor market model: the cap market case

Author

Listed:
  • Sami Attaoui

    (Pôle Finance Responsable - Rouen Business School - Rouen Business School)

Abstract

This article investigates the hedging performance of the Libor Market Model (LMM) as well as the need to use models that explicitly incorporate Volatility Specific Factors (VSF) to better the hedging results. We compare the hedging performance of a standard LMM to that of a Constant Elasticity of Variance (CEV) LMM and find that, although the volatility risk is not completely removed by a hedge portfolio composed only of bonds, using a standard LMM is adequate to obtain high hedging performance in the cap market.

Suggested Citation

  • Sami Attaoui, 2011. "Hedging performance of the Libor market model: the cap market case," Post-Print hal-00653437, HAL.
  • Handle: RePEc:hal:journl:hal-00653437
    DOI: 10.1080/09603107.2011.568391
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Rong Fan & Anurag Gupta & Peter Ritchken, 2003. "Hedging in the Possible Presence of Unspanned Stochastic Volatility: Evidence from Swaption Markets," Journal of Finance, American Finance Association, vol. 58(5), pages 2219-2248, October.
    2. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    3. Brennan, Michael J. & Schwartz, Eduardo S., 1982. "An Equilibrium Model of Bond Pricing and a Test of Market Efficiency," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(3), pages 301-329, September.
    4. Driessen, Joost & Klaassen, Pieter & Melenberg, Bertrand, 2003. "The Performance of Multi-Factor Term Structure Models for Pricing and Hedging Caps and Swaptions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(3), pages 635-672, September.
    5. Pierre Collin‐Dufresne & Robert S. Goldstein, 2002. "Do Bonds Span the Fixed Income Markets? Theory and Evidence for Unspanned Stochastic Volatility," Journal of Finance, American Finance Association, vol. 57(4), pages 1685-1730, August.
    6. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    7. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    8. Longstaff, Francis A. & Santa-Clara, Pedro & Schwartz, Eduardo S., 2001. "Throwing away a billion dollars: the cost of suboptimal exercise strategies in the swaptions market," Journal of Financial Economics, Elsevier, vol. 62(1), pages 39-66, October.
    9. Alan Brace & Dariusz G¸atarek & Marek Musiela, 1997. "The Market Model of Interest Rate Dynamics," Mathematical Finance, Wiley Blackwell, vol. 7(2), pages 127-155, April.
    10. Hull, John & White, Alan, 1990. "Pricing Interest-Rate-Derivative Securities," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 573-592.
    11. Marek Rutkowski, 1999. "Models of forward Libor and swap rates," Applied Mathematical Finance, Taylor & Francis Journals, vol. 6(1), pages 29-60.
    12. Gupta, Anurag & Subrahmanyam, Marti G., 2005. "Pricing and hedging interest rate options: Evidence from cap-floor markets," Journal of Banking & Finance, Elsevier, vol. 29(3), pages 701-733, March.
    13. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Svenstrup, Mikkel, 2005. "On the suboptimality of single-factor exercise strategies for Bermudan swaptions," Journal of Financial Economics, Elsevier, vol. 78(3), pages 651-684, December.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Raoul Pietersz & Antoon Pelsser, 2010. "A comparison of single factor Markov-functional and multi factor market models," Review of Derivatives Research, Springer, vol. 13(3), pages 245-272, October.
    4. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    5. Haitao Li & Feng Zhao, 2009. "Nonparametric Estimation of State-Price Densities Implicit in Interest Rate Cap Prices," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4335-4376, November.
    6. Falini, Jury, 2010. "Pricing caps with HJM models: The benefits of humped volatility," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1358-1367, December.
    7. I‐Doun Kuo & Kai‐Li Wang, 2009. "Implied deterministic volatility functions: An empirical test for Euribor options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 29(4), pages 319-347, April.
    8. Bueno-Guerrero, Alberto & Moreno, Manuel & Navas, Javier F., 2020. "Valuation of caps and swaptions under a stochastic string model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    9. Robert A. Jarrow, 2009. "The Term Structure of Interest Rates," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 69-96, November.
    10. Robert Jarrow & Haitao Li & Feng Zhao, 2007. "Interest Rate Caps “Smile” Too! But Can the LIBOR Market Models Capture the Smile?," Journal of Finance, American Finance Association, vol. 62(1), pages 345-382, February.
    11. Gupta, Anurag & Subrahmanyam, Marti G., 2005. "Pricing and hedging interest rate options: Evidence from cap-floor markets," Journal of Banking & Finance, Elsevier, vol. 29(3), pages 701-733, March.
    12. Svenstrup, Mikkel, 2003. "On the Suboptimality of Single-Factor Exercise Strategies for Bermudan Swaptions," Finance Working Papers 02-24, University of Aarhus, Aarhus School of Business, Department of Business Studies.
    13. Frank De Jong & Joost Driessen & Antoon Pelsser, 2001. "Libor Market Models versus Swap Market Models for Pricing Interest Rate Derivatives: An Empirical Analysis," Review of Finance, European Finance Association, vol. 5(3), pages 201-237.
    14. Massoud Heidari & Liuren Wu, 2002. "Term Structure of Interest Rates, Yield Curve Residuals, and the Consistent Pricing of Interest Rates and Interest Rate Derivatives," Finance 0207010, University Library of Munich, Germany, revised 10 Sep 2002.
    15. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    16. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    17. Anders B. Trolle & Eduardo S. Schwartz, 2009. "A General Stochastic Volatility Model for the Pricing of Interest Rate Derivatives," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 2007-2057, May.
    18. Dariusz Gatarek & Juliusz Jabłecki, 2021. "Between Scylla and Charybdis: The Bermudan Swaptions Pricing Odyssey," Mathematics, MDPI, vol. 9(2), pages 1-32, January.
    19. Driessen, Joost & Klaassen, Pieter & Melenberg, Bertrand, 2003. "The Performance of Multi-Factor Term Structure Models for Pricing and Hedging Caps and Swaptions," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(3), pages 635-672, September.
    20. Heidari, Massoud & Wu, Liuren, 2009. "A Joint Framework for Consistently Pricing Interest Rates and Interest Rate Derivatives," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 44(3), pages 517-550, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00653437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.