IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-00422575.html
   My bibliography  Save this paper

Profile of public laboratories, industrial partnerships and organisation of R & D: the dynamics of industrial relationships in a large research organisation

Author

Listed:
  • P.-B. Joly

    (GAEL - Laboratoire d'Economie Appliquée = Grenoble Applied Economics Laboratory - UPMF - Université Pierre Mendès France - Grenoble 2 - INRA - Institut National de la Recherche Agronomique)

  • Vincent Mangematin

    (GAEL - Laboratoire d'Economie Appliquée = Grenoble Applied Economics Laboratory - UPMF - Université Pierre Mendès France - Grenoble 2 - INRA - Institut National de la Recherche Agronomique, MTS - Management Technologique et Strategique - EESC-GEM Grenoble Ecole de Management)

Abstract

There is a paucity of papers dealing with the system characteristics of laboratories or, put in another way, the institutional character of research organisations. Neither R & D economics nor the sociology of science, as traditionally conceived, has made much headway in providing insight into sets of R & D laboratories and their evolution. Drawing upon an empirical study in the plant breeding and biochemical industry, this paper presents a typology of public research laboratories which is based on three dimensions: scientific production and visibility, type of funding (public or private) and homogeneity of research themes. Three types of public laboratory emerge: the first, called "research centres for the profession", is composed essentially of laboratories with close ties with small and medium firms (SMEs) and industry associations. The second, called "designers of generic tools and methods", is oriented towards basic research and themes of general interest to the industry as a whole. The third type, called "basic and specialised laboratories", strives to develop its scientific visibility. Contracts between this type of laboratory and industry are mainly bilateral and demonstrate the complementarity between public and private research. Each type of laboratory develops specific types of relationship with private partners. The authors have identified three logics underlying these relationships: proximity, market and club. The main objective of contracts based on a proximity logic is to test a hypothesis, while the knowledge produced is mostly tacit and specific. By contrast, knowledge is entirely coded and specific in the market logic, where the aim of the contract is to implement expertise in order to relieve a scientific bottleneck. In a club logic, the aim of contracts is to produce a technical referent. In each kind of contract, the learning trajectories, modes of co-ordination, role of trust and degree to which contracts are complete or not, are different.

Suggested Citation

  • P.-B. Joly & Vincent Mangematin, 1996. "Profile of public laboratories, industrial partnerships and organisation of R & D: the dynamics of industrial relationships in a large research organisation," Post-Print hal-00422575, HAL.
  • Handle: RePEc:hal:journl:hal-00422575
    DOI: 10.1016/0048-7333(96)00882-7
    Note: View the original document on HAL open archive server: http://hal.grenoble-em.com/hal-00422575
    as

    Download full text from publisher

    File URL: http://hal.grenoble-em.com/hal-00422575/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/0048-7333(96)00882-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. David J. TEECE, 2008. "Profiting from technological innovation: Implications for integration, collaboration, licensing and public policy," World Scientific Book Chapters, in: The Transfer And Licensing Of Know-How And Intellectual Property Understanding the Multinational Enterprise in the Modern World, chapter 5, pages 67-87, World Scientific Publishing Co. Pte. Ltd..
    2. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    3. Richard R. Nelson, 1959. "The Simple Economics of Basic Scientific Research," Journal of Political Economy, University of Chicago Press, vol. 67(3), pages 297-297.
    4. Vincent Mangematin, 1997. "The Simultaneous Shaping of Organization and Technology Within Co-operative Agreements," Grenoble Ecole de Management (Post-Print) hal-00424311, HAL.
    5. Rosenberg, Nathan & Nelson, Richard R., 1994. "American universities and technical advance in industry," Research Policy, Elsevier, vol. 23(3), pages 323-348, May.
    6. Giovanni Dosi, 2000. "Sources, Procedures, and Microeconomic Effects of Innovation," Chapters, in: Innovation, Organization and Economic Dynamics, chapter 2, pages 63-114, Edward Elgar Publishing.
    7. Partha, Dasgupta & David, Paul A., 1994. "Toward a new economics of science," Research Policy, Elsevier, vol. 23(5), pages 487-521, September.
    8. Nathan ROSENBERG, 2009. "Why do firms do basic research (with their own money)?," World Scientific Book Chapters, in: Nathan Rosenberg (ed.), Studies On Science And The Innovation Process Selected Works of Nathan Rosenberg, chapter 11, pages 225-234, World Scientific Publishing Co. Pte. Ltd..
    9. Crow, Michael & Bozeman, Barry, 1987. "R&D laboratory classification and public policy: The effects of environmental context on laboratory behavior," Research Policy, Elsevier, vol. 16(5), pages 229-258, October.
    10. Vincent Mangematin, 1997. "The Simultaneous Shaping of Organization and Technology Within Co-operative Agreements," Post-Print hal-00424311, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joly, P. B. & Mangematin, V., 1996. "Profile of public laboratories, industrial partnerships and organisation of R & D: the dynamics of industrial relationships in a large research organisation," Research Policy, Elsevier, vol. 25(6), pages 901-922, September.
    2. Dosi, Giovanni & Nelson, Richard R., 2010. "Technical Change and Industrial Dynamics as Evolutionary Processes," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 51-127, Elsevier.
    3. Harabi, Najib, 1994. "Technischer Fortschritt in der Schweiz: Empirische Ergebnisse aus industrieökonomischer Sicht [Technischer Fortschritt in der Schweiz:Empirische Ergebnisse aus industrieökonomischer Sicht]," MPRA Paper 6725, University Library of Munich, Germany.
    4. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    5. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    6. Roper, Stephen & Hewitt-Dundas, Nola & Love, James H., 2004. "An ex ante evaluation framework for the regional benefits of publicly supported R&D projects," Research Policy, Elsevier, vol. 33(3), pages 487-509, April.
    7. Mukherjee, Arijit & Stern, Scott, 2009. "Disclosure or secrecy? The dynamics of Open Science," International Journal of Industrial Organization, Elsevier, vol. 27(3), pages 449-462, May.
    8. Ufuk Akcigit & Douglas Hanley & Nicolas Serrano-Velarde, 2021. "Back to Basics: Basic Research Spillovers, Innovation Policy, and Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 88(1), pages 1-43.
    9. Dedrick, Jason & Kraemer, Kenneth L., 2015. "Who captures value from science-based innovation? The distribution of benefits from GMR in the hard disk drive industry," Research Policy, Elsevier, vol. 44(8), pages 1615-1628.
    10. Archibugi, Daniele & Filippetti, Andrea, 2018. "The retreat of public research and its adverse consequences on innovation," Technological Forecasting and Social Change, Elsevier, vol. 127(C), pages 97-111.
    11. Su Jung Jee & So Young Sohn, 2023. "A firm’s creation of proprietary knowledge linked to the knowledge spilled over from its research publications: the case of artificial intelligence," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 32(4), pages 876-900.
    12. Simeth, Markus & Raffo, Julio D., 2013. "What makes companies pursue an Open Science strategy?," Research Policy, Elsevier, vol. 42(9), pages 1531-1543.
    13. Pavitt, Keith, 1998. "The social shaping of the national science base," Research Policy, Elsevier, vol. 27(8), pages 793-805, December.
    14. Levin, Mark (Левин, Марк) & Matrosova, K. (Матросова, К.), 2016. "Research, Modeling and Process Management Dissemination of Innovations in Socio-Economic Systems [Исследование, Моделирование И Управление Процессами Распространения Инноваций В Социально-Экономиче," Working Papers 1443, Russian Presidential Academy of National Economy and Public Administration.
    15. Larsen, Maria Theresa, 2011. "The implications of academic enterprise for public science: An overview of the empirical evidence," Research Policy, Elsevier, vol. 40(1), pages 6-19, February.
    16. Salter, Ammon J. & Martin, Ben R., 2001. "The economic benefits of publicly funded basic research: a critical review," Research Policy, Elsevier, vol. 30(3), pages 509-532, March.
    17. Gustafsson, Robin & Autio, Erkko, 2011. "A failure trichotomy in knowledge exploration and exploitation," Research Policy, Elsevier, vol. 40(6), pages 819-831, July.
    18. René Belderbos & Marcelina Grabowska & Stijn Kelchtermans & Bart Leten & Jojo Jacob & Massimo Riccaboni, 2021. "Whither geographic proximity? Bypassing local R&D units in foreign university collaboration," Journal of International Business Studies, Palgrave Macmillan;Academy of International Business, vol. 52(7), pages 1302-1330, September.
    19. Kealey, Terence & Ricketts, Martin, 2014. "Modelling science as a contribution good," Research Policy, Elsevier, vol. 43(6), pages 1014-1024.
    20. Tavassoli, Sam & Karlsson, Charlie, 2015. "Persistence of various types of innovation analyzed and explained," Research Policy, Elsevier, vol. 44(10), pages 1887-1901.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-00422575. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.